Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jul;29(7):1529-34.
doi: 10.2337/dc06-0261.

Cerebral blood flow velocity and periventricular white matter hyperintensities in type 2 diabetes

Affiliations

Cerebral blood flow velocity and periventricular white matter hyperintensities in type 2 diabetes

Vera Novak et al. Diabetes Care. 2006 Jul.

Abstract

Objective: Diabetes increases the risk for cerebromicrovascular disease, possibly through its effects on blood flow regulation. The aim of this study was to assess the effects of type 2 diabetes on blood flow velocities (BFVs) in the middle cerebral arteries and to determine the relationship between white matter hyperintensities (WMHs) on magnetic resonance imaging (MRI) and BFVs.

Research design and methods: We measured BFVs in 28 type 2 diabetic and 22 control subjects (aged 62.3 +/- 7.2 years) using transcranial Doppler ultrasound during baseline, hyperventilation, and CO(2) rebreathing. WMHs were graded, and their volume was quantified from fluid-attenuated inversion recovery images on a 3.0 Tesla MRI.

Results: The diabetic group demonstrated decreased mean BFVs and increased cerebrovascular resistance during baseline, hypo- and hypercapnia (P < 0.0001), and impaired CO(2) reactivity (P = 0.05). WMH volume was negatively correlated with baseline BFV (P < 0.0001). A regression model revealed that baseline BFVs were negatively associated with periventricular WMHs, HbA(1c) (A1C), and inflammatory markers and positively associated with systolic blood pressure (R(2) = 0.86, P < 0.0001).

Conclusions: Microvascular disease in type 2 diabetes, which manifests as white matter abnormalities on MRI, is associated with reduced cerebral BFVs, increased resistance in middle cerebral arteries, and inflammation. These findings are clinically relevant as a potential mechanism for cerebrovascular disease in elderly with type 2 diabetes.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Comparisons of mean BFVs in the MCAr (A) and MCAl (B) and CVR in MCAr (C) and MCAl (D) during baseline, hyperventilation minimum (HV-minimum), and hyperventilation maximum (RB-maximum) during CO2 rebreathing between the control (□) and diabetic (■) groups. Between-group comparisons for each condition at ***P ≤ 0.006, **0.006 < P ≤ 0.02, and *0.02 < P ≤ 0.05; comparisons between conditions at #P < 0.0001.
Figure 2
Figure 2
Axial slices at the level of the ventricles for a control (AC) and a diabetic (DF) subject. The three columns represent the FLAIR image (A and D), the WMHs segmentation (B and E), and the overlay of the segmentation on the FLAIR image (C and F).
Figure 3
Figure 3
Relationship between baseline mean BFVs and sum grade of continuous WMHs on the visual rating scale (A) and WMH volume on MRI (B). Regression analysis revealing that BFV significantly declined with increased WMH grade and volume. Regression analysis between the WMH volume on MRI and sum of continuous and punctuate WMHs (total WMHs grade) on the visual rating scale (C) for control () and diabetic () subjects.

Similar articles

Cited by

References

    1. Xu WL, Qiu CX, Wahlin A, Winblad B, Fratiglioni L. Diabetes mellitus and risk of dementia in the Kungsholmen project: a 6-year follow-up study. Neurology. 2004;63:1181–1186. - PubMed
    1. Harik SI, La Manna JC. Vascular perfusion and blood-brain glucose transport in acute and chronic hyperglycemia. J Neurochem. 1988;51:1924–1929. - PubMed
    1. Trauernicht AK, Sun H, Patel KP, Mayhan WG. Enalapril prevents impaired nitric oxide synthase-dependent dilatation of cerebral arterioles in diabetic rats. Stroke. 2003;34:2698–2703. - PubMed
    1. Makimattila S, Malmberg-Ceder K, Hakkinen AM, Vuori K, Salonen O, Summanen P, Yki-Jarvinen H, Kaste M, Heikkinen S, Lundbom N, Roine RO. Brain metabolic alterations in patients with type 1 diabetes-hyperglycemia-induced injury. J Cereb Blood Flow Metab. 2004;24:1393–1399. - PubMed
    1. Dandona P, James IM, Newbury PA, Woollard ML, Beckett AG. Cerebral blood flow in diabetes mellitus: evidence of abnormal cerebrovascular reactivity. Br Med J. 1978;29:325–326. - PMC - PubMed

Publication types

-