Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007;176(1):22-36.
doi: 10.1111/j.1469-8137.2007.02191.x.

The mycorrhiza helper bacteria revisited

Affiliations
Free article
Review

The mycorrhiza helper bacteria revisited

P Frey-Klett et al. New Phytol. 2007.
Free article

Abstract

In natural conditions, mycorrhizal fungi are surrounded by complex microbial communities, which modulate the mycorrhizal symbiosis. Here, the focus is on the so-called mycorrhiza helper bacteria (MHB). This concept is revisited, and the distinction is made between the helper bacteria, which assist mycorrhiza formation, and those that interact positively with the functioning of the symbiosis. After considering some examples of MHB from the literature, the ecological and evolutionary implications of the relationships of MHB with mycorrhizal fungi are discussed. The question of the specificity of the MHB effect is addressed, and an assessment is made of progress in understanding the mechanisms of the MHB effect, which has been made possible through the development of genomics. Finally, clear evidence is presented suggesting that some MHB promote the functioning of the mycorrhizal symbiosis. This is illustrated for three critical functions of practical significance: nutrient mobilization from soil minerals, fixation of atmospheric nitrogen, and protection of plants against root pathogens. The review concludes with discussion of future research priorities regarding the potentially very fruitful concept of MHB.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Abdel-Fattah GM, Mohamedin AH. 2000. Interactions between a vesicular-arbuscular mycorrhizal fungus (Glomus intraradices) and Streptomyces coelicolor and their effects on sorghum plants grown in soil amended with chitin of brawn scales. Biology and Fertility of Soils 32: 401-409.
    1. Akiyama K, Matsuoka H, Hayashi H. 2002. Isolation and identification of a phosphate deficiency-induced C-glycosylflavonoid that stimulates arbuscular mycorrhiza formation in melon roots. Molecular Plant-Microbe Interactions 15: 334-340.
    1. Von Alten H, Lindemann A, Schönbeck F. 1993. Stimulation of vesicular-arbuscular mycorrhiza by fungicides or rhizosphere bacteria. Mycorrhiza 2: 167-173.
    1. Artursson V. 2005. Bacterial-fungal interactions highlighted using microbiomics: potential application for plant growth enhancement. PhD thesis, University of Uppsala, Uppsala, Sweden.
    1. Artursson V, Finlay RD, Jansson JK. 2006. Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environmental Microbiology 8: 1-10.

LinkOut - more resources

-