Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Oct;111(3):453-9.
doi: 10.1007/s10549-007-9812-4. Epub 2007 Nov 17.

Expression of the forkhead transcription factor FOXP1 is associated with that of estrogen receptor-beta in primary invasive breast carcinomas

Affiliations

Expression of the forkhead transcription factor FOXP1 is associated with that of estrogen receptor-beta in primary invasive breast carcinomas

Gaynor J Bates et al. Breast Cancer Res Treat. 2008 Oct.

Abstract

We previously identified a correlation between estrogen receptor alpha (ERalpha) and the candidate tumour suppressor gene Forkhead Box P1 (FOXP1), whose nuclear protein expression in breast tumours was associated with improved patient survival. However, the expression pattern of FOXP1 in normal breast tissue is more reminiscent of the second receptor, ERbeta, which has an emerging role as a tumour suppressor in breast cancer and critically may underlie the ability of some ERalpha-negative tumours to respond to tamoxifen. In a series of 283 breast cancers, in which ERalpha-positive tumours were treated with tamoxifen, the nuclear expression of ERbeta correlated significantly with ERalpha (p = 0.004), low-tumour grade (p = 0.008) and nuclear FOXP1 (p = 0.01). High-grade tumours exhibited significantly more cytoplasmic ERbeta than the low-grade tumours (p = 0.006). Regression analysis demonstrated that FOXP1 expression was most closely related to nuclear ERbeta (p = 0.021). Neither, nuclear or cytoplasmic ERbeta expression demonstrated prognostic significance. FOXP1 is not estrogen regulated and silencing FOXP1 expression, using siRNA, did not affect ERalpha, ERbeta or progesterone receptor expression, suggesting ER and FOXP1 co-expression may reflect a common regulatory mechanism.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

-