Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Feb;83(2):107-13.
doi: 10.1007/s00204-008-0338-2. Epub 2008 Jul 18.

Arsenic-induced suicidal erythrocyte death

Affiliations

Arsenic-induced suicidal erythrocyte death

Hasan Mahmud et al. Arch Toxicol. 2009 Feb.

Abstract

Environmental exposure to arsenic has been associated with anemia, which could result from suicidal erythrocyte death or eryptosis, characterized by cell shrinkage and phosphatidylserine exposure at the erythrocyte surface. Eryptosis is triggered by increase in cytosolic Ca2+ concentration, ceramide and energy depletion. The present experiments explored, whether arsenic stimulates eryptosis. According to annexin V-binding, arsenic trioxide (7 microM) within 48 h significantly increased phosphatidylserine exposure of human erythrocytes without inducing hemolysis. According to forward scatter, arsenic trioxide (7 microM) significantly decreased cell volume. Moreover, Fluo3-fluorescence showed that arsenic (10 microM) significantly increased cytosolic Ca2+ concentration. According to binding of respective fluorescent antibodies, arsenic trioxide (10 microM) significantly increased ceramide formation. Arsenic (10 microM) further lowered the intracellular ATP concentration. Removal of extracellular Ca2+ or inhibition of the Ca2+-permeable cation channels with amiloride blunted the effects of arsenic on annexin V-binding and cell shrinkage. In conclusion, arsenic triggers suicidal erythrocyte death by increasing cytosolic Ca2+ concentration, by stimulating the formation of ceramide and by decreasing ATP availability.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources

-