Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009:71:361-79.
doi: 10.1146/annurev.physiol.010908.163108.

Activation of the epithelial sodium channel (ENaC) by serine proteases

Affiliations
Review

Activation of the epithelial sodium channel (ENaC) by serine proteases

Bernard C Rossier et al. Annu Rev Physiol. 2009.

Abstract

The study of human monogenic diseases [pseudohypoaldosteronism type 1 (PHA-1) and Liddle's syndrome] as well as mouse models mimicking the salt-losing syndrome (PHA-1) or salt-sensitive hypertension (Liddle's syndrome) have established the epithelial sodium channel ENaC as a limiting factor in vivo in the control of ionic composition of the extracellular fluid, regulation of blood volume and blood pressure, lung alveolar clearance, and airway mucociliary clearance. In this review, we discuss more specifically the activation of ENaC by serine proteases. Recent in vitro and in vivo experiments indicate that membrane-bound serine proteases are of critical importance in the activation of ENaC in different organs, such as the kidney, the lung, or the cochlea. Progress in understanding the basic mechanism of proteolytic activation of ENaC is accelerating, but uncertainty about the most fundamental aspects persists, leaving numerous still-unanswered questions.

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources

-