Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Dec 11;62(1):99-108.
doi: 10.1016/j.brainresrev.2009.09.006. Epub 2009 Sep 25.

The role and regulation of hypoxia-inducible factor-1alpha expression in brain development and neonatal hypoxic-ischemic brain injury

Affiliations
Review

The role and regulation of hypoxia-inducible factor-1alpha expression in brain development and neonatal hypoxic-ischemic brain injury

Xiyong Fan et al. Brain Res Rev. .

Abstract

During neonatal hypoxic-ischemic brain injury, activation of transcription of a series of genes is induced to stimulate erythropoiesis, anti-apoptosis, apoptosis, necrosis and angiogenesis. A key factor mediating these gene transcriptions is hypoxia-inducible factor-1alpha (HIF-1alpha). During hypoxia, HIF-1alpha protein is stabilized and heterodimerizes with HIF-1beta to form HIF-1, subsequently regulating the expression of target genes. HIF-1alpha participates in early brain development and proliferation of neuronal precursor cells. Under pathological conditions, HIF-1alpha is known to play an important role in neonatal hypoxic-ischemic brain injury: on the one hand, HIF-1alpha has neuroprotective effects whereas it can also have neurotoxic effects. HIF-1alpha regulates the transcription of erythropoietin (EPO), which induces several pathways associated with neuroprotection. HIF-1alpha also promotes the expression of vascular endothelial cell growth factor (VEGF), which is related to neovascularization in hypoxic-ischemic brain areas. In addition, HIF-1alpha has an anti-apoptotic effect by increasing the expression of anti-apoptotic factors such as EPO during mild hypoxia. The neurotoxic effects of HIF-1alpha are represented by its participation in the apoptotic process by increasing the stability of the tumor suppressor protein p53 during severe hypoxia. Moreover, HIF-1alpha plays a role in cell necrosis, by interacting with calcium and calpain. HIF-1alpha can also exacerbate brain edema via increasing the permeability of the blood-brain barrier (BBB). Given these properties, HIF-1alpha has both neuroprotective and neurotoxic effects after hypoxia-ischemia. These events are cell type specific and related to the severity of hypoxia. Unravelling of the complex functions of HIF-1alpha may be important when designing neuroprotective therapies for hypoxic-ischemic brain injury.

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources

-