Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Apr 22;53(8):3117-26.
doi: 10.1021/jm901741p.

Synthesis of new acridone derivatives, inhibitors of NS3 helicase, which efficiently and specifically inhibit subgenomic HCV replication

Affiliations

Synthesis of new acridone derivatives, inhibitors of NS3 helicase, which efficiently and specifically inhibit subgenomic HCV replication

Anna Stankiewicz-Drogoń et al. J Med Chem. .

Abstract

A new goup of acridone derivatives, obtained by reaction of acridone-4-carboxylic acid derivatives with aromatic amines, was tested to determine the inhibitory properties toward the NS3 helicase of hepatitis C virus (HCV). Six compounds inhibited the NS3 helicase at low concentrations (IC(50) from 1.5 to 20 microM). The acridone derivatives probably act via intercalation into double-stranded nucleic acids with a strong specificity for double-stranded RNA, although an interaction with the enzyme cannot be excluded. Testing in the subgenomic HCV replicon system revealed that compounds 10 and 13 are efficient RNA replication inhibitors, with EC(50) of 3.5 and 1 microM and therapeutic indexes of >28 and 20, respectively. Compound 16, with EC(50) < 1 microM and TI > 1000, is extremely specific and practically noncytotoxic at the concentrations tested, proving that the acridone derivatives may be regarded as potential antiviral agents. Although the mechanism of action of 16 in the replicon system remains unclear, it is the key lead compound for further development of anti-HCV drugs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources

-