Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Oct 8:1355:52-60.
doi: 10.1016/j.brainres.2010.08.039. Epub 2010 Aug 19.

Role of the medial prefrontal cortex in coping and resilience

Affiliations
Review

Role of the medial prefrontal cortex in coping and resilience

Steven F Maier et al. Brain Res. .

Abstract

The degree of behavioral control that an organism has over an aversive event is well known to modulate the behavioral and neurochemical consequences of exposure to the event. Here we review recent research that suggests that the experience of control over a potent stressor alters how the organism responds to future aversive events as well as to the stressor being controlled. More specifically, subjects that have experienced control show blunted behavioral and neurochemical responses to subsequent stressors occurring days to months later. Indeed, these subjects respond as if a later uncontrollable stressor is actually controllable. Further, we review research indicating that the stress resistance induced by control depends on control-induced activation of ventral medial prefrontal cortical (vmPFC) inhibitory control over brainstem and limbic structures. Furthermore, there appears to be plasticity in these circuits such that the experience of control alters the vmPFC in such a way that later uncontrollable stressors now activate the vmPFC circuitry, leading to inhibition of stress-responsive limbic and brainstem structures, i.e., stressor resistance. This controllability-induced proactive stressor resistance generalizes across very different stressors and may be involved in determining individual difference in reactions to traumatic events.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Scheme of how stressor controllability modulates the behavioral impact of aversive stimuli. Glut=glutamate, vmPFC=ventral medial prefrontal cortex, L. habenula=lateral habenula, LC=locus coeruleus, BNST=bed nucleus of the stria terminalis, GABA=gamma aminobutyric acid, 5-HT=serotonin, DRN=dorsal raphe

Similar articles

Cited by

References

    1. Amat J, Baratta MV, Paul E, Bland ST, Watkins LR, Maier SF. Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. Nat Neurosci. 2005;8:365–371. - PubMed
    1. Amat J, Matus-Amat P, Watkins LR, Maier SF. Escapable and inescapable stress differentially alter extracellular levels of 5-HT in the basolateral amygdala of the rat. Brain Res. 1998;812:113–120. - PubMed
    1. Amat J, Paul E, Watkins LR, Maier SF. Activation of the ventral medial prefrontal cortex during an uncontrollable stressor reproduces both the immediate and long-term protective effects of behavioral control. Neuroscience. 2008;154:1178–1186. - PMC - PubMed
    1. Amat J, Paul E, Zarza C, Watkins LR, Maier SF. Prior experience with behavioral control over stress blocks the behavioral effects of later uncontrollable stress: Role of the ventral medial prefrontal cortex. Journal of Neuroscience. 2006;26:13264–13272. - PMC - PubMed
    1. Amat J, Sparks PD, Matus-Amat P, Griggs J, Watkins LR, Maier SF. The role of the habenular complex in the elevation of dorsal raphe nucleus serotonin and the changes in the behavioral responses produced by uncontrollable stress. Brain Res. 2001;917:118–126. - PubMed

Publication types

MeSH terms

-