Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Nov 1;213(Pt 21):3593-602.
doi: 10.1242/jeb.048140.

Nitric oxide metabolites in goldfish under normoxic and hypoxic conditions

Affiliations

Nitric oxide metabolites in goldfish under normoxic and hypoxic conditions

Marie N Hansen et al. J Exp Biol. .

Abstract

Nitric oxide (NO), produced by nitric oxide synthases (NOS enzymes), regulates multiple physiological functions in animals. NO exerts its effects by binding to iron (Fe) of heme groups (exemplified by the activation of soluble guanylyl cyclase) and by S-nitrosylation of proteins - and it is metabolized to nitrite and nitrate. Nitrite is used as a marker for NOS activity but it is also a NO donor that can be activated by various cellular proteins under hypoxic conditions. Here, we report the first systematic study of NO metabolites (nitrite, nitrate, S-nitroso, N-nitroso and Fe-nitrosyl compounds) in multiple tissues of a non-mammalian vertebrate (goldfish) under normoxic and hypoxic conditions. NO metabolites were measured in blood (plasma and red cells) and heart, brain, gill, liver, kidney and skeletal muscle, using highly sensitive reductive chemiluminescence. The severity of the chosen hypoxia levels was assessed from metabolic and respiratory variables. In normoxic goldfish, the concentrations of NO metabolites in plasma and tissues were comparable with values reported in mammals, indicative of similar NOS activity. Exposure to hypoxia [at P(O₂) (partial pressure of O₂) values close to and below the critical P(O₂)] for two days caused large decreases in plasma nitrite and nitrate, which suggests reduced NOS activity and increased nitrite/nitrate utilization or loss. Tissue NO metabolites were largely maintained at their tissue-specific values under hypoxia, pointing at nitrite transfer from extracellular to intracellular compartments and cellular NO generation from nitrite. The data highlights the preference of goldfish to defend intracellular NO homeostasis during hypoxia.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources

-