Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Sep;1817(9):1628-34.
doi: 10.1016/j.bbabio.2012.05.011. Epub 2012 May 31.

Inhibition of complex I regulates the mitochondrial permeability transition through a phosphate-sensitive inhibitory site masked by cyclophilin D

Affiliations
Free article

Inhibition of complex I regulates the mitochondrial permeability transition through a phosphate-sensitive inhibitory site masked by cyclophilin D

Bo Li et al. Biochim Biophys Acta. 2012 Sep.
Free article

Abstract

Inhibition of the mitochondrial permeability transition pore (PTP) has proved to be an effective strategy for preventing oxidative stress-induced cell death, and the pore represents a viable cellular target for drugs. Here, we report that inhibition of complex I by rotenone is more effective at PTP inhibition than cyclosporin A in tissues that express low levels of the cyclosporin A mitochondrial target, cyclophilin D; and, conversely, that tissues in which rotenone does not affect the PTP are characterized by high levels of expression of cyclophilin D and sensitivity to cyclosporin A. Consistent with a regulatory role of complex I in the PTP-inhibiting effects of rotenone, the concentrations of the latter required for PTP inhibition precisely match those required to inhibit respiration; and a similar effect is seen with the antidiabetic drug metformin, which partially inhibits complex I. Remarkably (i) genetic ablation of cyclophilin D or its displacement with cyclosporin A restored PTP inhibition by rotenone in tissues that are otherwise resistant to its effects; and (ii) rotenone did not inhibit the PTP unless phosphate was present, in striking analogy with the phosphate requirement for the inhibitory effects of cyclosporin A [Basso et al. (2008) J. Biol. Chem. 283, 26307-26311]. These results indicate that inhibition of complex I by rotenone or metformin and displacement of cyclophilin D by cyclosporin A affect the PTP through a common mechanism; and that cells can modulate their PTP response to complex I inhibition by modifying the expression of cyclophilin D, a finding that has major implications for pore modulation in vivo.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources

-