Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1990 May 15;265(14):7994-8000.

Divergent molecular mechanisms for insulin-resistant glucose transport in muscle and adipose cells in vivo

Affiliations
  • PMID: 2335513
Free article
Comparative Study

Divergent molecular mechanisms for insulin-resistant glucose transport in muscle and adipose cells in vivo

M J Charron et al. J Biol Chem. .
Free article

Abstract

Glucose homeostasis depends on regulated changes in glucose transport in insulin-responsive tissues (e.g. muscle and adipose cells). This transport is mediated by at least two distinct glucose transporters: "adipose-muscle" and "erythrocyte-brain." To understand the molecular basis for in vivo insulin resistance we investigated the effects of fasting and refeeding on the expression of these two glucose transporters in adipose cells and skeletal muscle. In vivo insulin resistance seen with fasting and hyperresponsiveness seen with refeeding influence glucose transporter expression in a transporter-specific and tissue-specific manner. In adipose cells only the adipose-muscle glucose transporter mRNA and protein decrease dramatically with fasting and increase above control levels with refeeding, changes that parallel effects on insulin-stimulated glucose transport. In contrast, in muscle expression of both glucose transporters increase with fasting and return to control levels with refeeding, also in accordance with changes in glucose uptake in vitro. Although expression of the adipose-muscle glucose transporter predicts the physiological response at the tissue level, factors in the hormonal/metabolic milieu appear to override its increased expression in muscle resulting in insulin-resistant glucose uptake in this tissue in vivo.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources

-