Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Feb;325(6106):717-20.
doi: 10.1038/325717a0.

Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle

Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle

E Rios et al. Nature. 1987 Feb.

Abstract

The transduction of action potential to muscle contraction (E-C coupling) is an example of fast communication between plasma membrane events and the release of calcium from an internal store, which in muscle is the sarcoplasmic reticulum (SR). One theory is that the release channels of the SR are controlled by voltage-sensing molecules or complexes, located in the transverse tubular (T)-membrane, which produce, as membrane voltage varies, 'intramembrane charge movements', but nothing is known about the structure of such sensors. Receptors of the Ca-channel-blocking dihydropyridines present in many tissues, are most abundant in T-tubular muscle fractions from which they can be isolated as proteins. Fewer than 5% of muscle dihydropyridines are functional Ca channels; there is no known role for the remainder in skeletal muscle physiology. We report here that low concentrations of a dihydropyridine inhibit charge movements and SR calcium release in parallel. The effect has a dependence on membrane voltage analogous to that of specific binding of dihydropyridines. We propose specifically that the molecule that generates charge movement is the dihydropyridine receptor.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources

-