Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Dec 12:5:ecurrents.outbreaks.62df1c7c75ffc96cd59034531e2e8364.
doi: 10.1371/currents.outbreaks.62df1c7c75ffc96cd59034531e2e8364.

Reverse transcription recombinase polymerase amplification assay for the detection of middle East respiratory syndrome coronavirus

Affiliations

Reverse transcription recombinase polymerase amplification assay for the detection of middle East respiratory syndrome coronavirus

Ahmed Abd El Wahed et al. PLoS Curr. .

Abstract

The emergence of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in the eastern Mediterranean and imported cases to Europe has alerted public health authorities. Currently, detection of MERS-CoV in patient samples is done by real-time RT-PCR. Samples collected from suspected cases are sent to highly-equipped centralized laboratories for screening. A rapid point-of-care test is needed to allow more widespread mobile detection of the virus directly from patient material. In this study, we describe the development of a reverse transcription isothermal Recombinase Polymerase Amplification (RT-RPA) assay for the identification of MERS-CoV. A partial nucleocapsid gene RNA molecular standard of MERS-coronavirus was used to determine the assay sensitivity. The isothermal (42°C) MERS-CoV RT-RPA was as sensitive as real-time RT-PCR (10 RNA molecules), rapid (3-7 minutes) and mobile (using tubescanner weighing 1kg). The MERS-CoV RT-RPA showed cross-detection neither of any of the RNAs of several coronaviruses and respiratory viruses affecting humans nor of the human genome. The developed isothermal real-time RT-RPA is ideal for rapid mobile molecular MERS-CoV monitoring in acute patients and may also facilitate the search for the animal reservoir of MERS-CoV.

Keywords: MERS-coronavirus; RPA; point-of-care assay.

PubMed Disclaimer

Figures

MERS-CoV RT-RPA assay.
MERS-CoV RT-RPA assay.
Over time development of fluorescence using a dilution range of 107-101 molecules/µl of the RNA molecular standard (Tubescanner Studio Software, Qiagen, Germany). MERS-CoV RT-RPA assay sensitivity is 10 copies and yielded results in maximum 7 minutes. 107 represented by black line; 106, gray; 105, red; 104, blue; 103, green; 102, cyan; 101, dark khaki; negative control, orange. No fluorescence signals was measured for one minute (after 3 minutes of the start of the reaction) because of the need of mixing the content.
Analytical sensitivity of MERS-CoV NC real-time RT-PCR and RT-RPA.
Analytical sensitivity of MERS-CoV NC real-time RT-PCR and RT-RPA.
The analytical sensitivity was determined on RNA molecular standard (8 runs) for real-time RT-PCR (A) and real-time RT-RPA (B). Both assays have a sensitivity of 10 RNA molecules. The RT-RPA assay was much faster than the RT-PCR as the run time of the RT-RPA is between 3-7 minutes for 107 and 101molecules, respectively. While the RT-PCR needed up to 2 hours. Consequently, RT-PCR results is linear, while RT-RPA not.
Probit regression analysis of MERS-CoV RT-RPA assay
Probit regression analysis of MERS-CoV RT-RPA assay
The probit analysis was performed using Statistica software on data of the eight runs of 107-101 RNA molecular standard. The limit of detection at 95% probability (21 RNA molecules) is depicted by a Rhomboid.

Similar articles

Cited by

References

    1. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012 Nov 8;367(19):1814-20. PubMed PMID:23075143. - PubMed
    1. WHO Middle East Respiratory Syndrome Coronavirus update
    1. Corman VM, Müller MA, Costabel U, Timm J, Binger T, Meyer B, Kreher P, Lattwein E, Eschbach-Bludau M, Nitsche A, Bleicker T, Landt O, Schweiger B, Drexler JF, Osterhaus AD, Haagmans BL, Dittmer U, Bonin F, Wolff T, Drosten C. Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections. Euro Surveill. 2012 Dec 6;17(49). PubMed PMID:23231891. - PubMed
    1. Piepenburg O, Williams CH, Stemple DL, Armes NA. DNA detection using recombination proteins. PLoS Biol. 2006 Jul;4(7):e204. PubMed PMID:16756388. - PMC - PubMed
    1. Abd El Wahed A, El-Deeb A, El-Tholoth M, Abd El Kader H, Ahmed A, Hassan S, Hoffmann B, Haas B, Shalaby MA, Hufert FT, Weidmann M. A Portable Reverse Transcription Recombinase Polymerase Amplification Assay for Rapid Detection of Foot-and-Mouth Disease Virus. PLoS One. 2013 Aug 20;8(8):e71642. PubMed PMID:23977101. - PMC - PubMed

Grants and funding

The study was funded by the Federal Ministry of Education and Research (BMBF) (project name: RESCheck, ID: FKN:16SV5436).
-