Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Mar;62(3):563-71.
doi: 10.1161/01.res.62.3.563.

A model for early afterdepolarizations: induction with the Ca2+ channel agonist Bay K 8644

Affiliations

A model for early afterdepolarizations: induction with the Ca2+ channel agonist Bay K 8644

C T January et al. Circ Res. 1988 Mar.

Abstract

Early afterdepolarizations (EADs) are one mechanism proposed to cause certain cardiac arrhythmias. We studied the effect of the Ca2+ channel agonist Bay K 8644 (1 x 10(-8) to 5 x 10(-5) M) on normally polarized sheep and canine cardiac Purkinje fiber short segments. EADs occurred with higher Bay K 8644 concentrations and had an average take-off potential of -34 mV. The initiation of EADs was preceded by lengthening of action potential duration and flattening of the plateau. Induction of EADs with Bay K 8644 was enhanced by low stimulation frequencies, lowering of [K]o, addition of tetraethylammonium chloride, or application of depolarizing constant current pulses during the plateau. EADs were abolished by increasing stimulation frequency, raising [K]o, the addition of tetrodotoxin, lidocaine, ethmozin, verapamil, and nitrendipine, or application of repolarizing constant current pulses. Using current pulses to modify the action potential plateau, a steep inverse relationship was found between the EAD peak voltage and its take-off potential, and EADs could be initiated over only a narrow range of take-off potentials. Thus, interventions that suppressed EADs shortened action potential duration or shifted the plateau away from the voltage range needed to initiate EADs. These observations suggest that mechanisms dependent on both time and voltage underlie EADs, and provide a unifying hypothesis for the induction of the EADs. We propose that induction of EADs requires 1) lengthening of action potential duration within a plateau voltage range where 2) recovery from inactivation and reactivation of an inward current possibly carried through Ca2+ channels can occur.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources

-