Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Apr 21;9(4):e94860.
doi: 10.1371/journal.pone.0094860. eCollection 2014.

Phenolic acid composition, antiatherogenic and anticancer potential of honeys derived from various regions in Greece

Affiliations

Phenolic acid composition, antiatherogenic and anticancer potential of honeys derived from various regions in Greece

Eliana Spilioti et al. PLoS One. .

Abstract

The phenolic acid profile of honey depends greatly on its botanical and geographical origin. In this study, we carried out a quantitative analysis of phenolic acids in the ethyl acetate extract of 12 honeys collected from various regions in Greece. Our findings indicate that protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, caffeic acid and p-coumaric acid are the major phenolic acids of the honeys examined. Conifer tree honey (from pine and fir) contained significantly higher concentrations of protocatechuic and caffeic acid (mean: 6640 and 397 µg/kg honey respectively) than thyme and citrus honey (mean of protocatechuic and caffeic acid: 437.6 and 116 µg/kg honey respectively). p-Hydroxybenzoic acid was the dominant compound in thyme honeys (mean: 1252.5 µg/kg honey). We further examined the antioxidant potential (ORAC assay) of the extracts, their ability to influence viability of prostate cancer (PC-3) and breast cancer (MCF-7) cells as well as their lowering effect on TNF- α-induced adhesion molecule expression in endothelial cells (HAEC). ORAC values of Greek honeys ranged from 415 to 2129 µmol Trolox equivalent/kg honey and correlated significantly with their content in protocatechuic acid (p<0.001), p-hydroxybenzoic acid (p<0.01), vanillic acid (p<0.05), caffeic acid (p<0.01), p-coumaric acid (p<0.001) and their total phenolic content (p<0.001). Honey extracts reduced significantly the viability of PC-3 and MCF-7 cells as well as the expression of adhesion molecules in HAEC. Importantly, vanillic acid content correlated significantly with anticancer activity in PC-3 and MCF-7 cells (p<0.01, p<0.05 respectively). Protocatechuic acid, vanillic acid and total phenolic content correlated significantly with the inhibition of VCAM-1 expression (p<0.05, p<0.05 and p<0.01 respectively). In conclusion, Greek honeys are rich in phenolic acids, in particular protocatechuic and p-hydroxybenzoic acid and exhibit significant antioxidant, anticancer and antiatherogenic activities which may be attributed, at least in part, to their phenolic acid content.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Representative chromatograms of honey extracts and standards.
HPLC-DAD chromatograms (280 nm) obtained from honey samples (H1, H5, H10) and a standard mixture of phenolic acids and hydroxymethylfurfural (HMF). Peak identification: (1) gallic acid; (2) HMF; (3) protocatechuic acid; (4) p-hydroxybenzoic acid; (5) chlorogenic acid; (6) vanillic acid; (7) caffeic acid; (8) syringic acid; (9) p-coumaric acid; (10) ferrulic acid; (11) sinapic acid; (12) benzoic acid; (13) trans-cinnamic acid.
Figure 2
Figure 2. Greek honey extracts inhibit TNF-α-induced adhesion molecule expression.
Greek honey extracts (H1–H12) inhibit TNF-α-induced ICAM-1 (A) and VCAM-1 (B) protein expression in HAEC. HAEC were incubated in the absence of TNF-α or compounds (control), with αT3 (25 µΜ), or with different concentrations (20–500 µg/ml) of honey extracts for 18 h, followed by stimulation with TNF-α (1 ng/mL) for up to 24 h. Adhesion molecules were measured by cell ELISA. Results are expressed as percent of control. A *p<0.05 value was considered statistically significant when compared to TNF-α-treated cells (**p<0.01, ***p<0.001). Values represent mean ± SD based on three independent experiments performed in triplicate.
Figure 3
Figure 3. Greek honey extracts inhibit viability of prostate and breast cancer cells.
Greek honey extracts (H1–H12) inhibit viability of PC-3 (A) and MCF-7 (B) cells. Cells were incubated in the absence of compounds (control) or with different concentrations (20–500 µg/ml) of honey extracts for 48 h. As a positive control, MCF-7 and PC-3 cells were cultured with ICI 182780 (0.1 µΜ) and doxorubicin (1 µΜ) respectively. After treatment, cells were subjected to the MTT assay. Results are expressed as percent of control. A *p<0.05 value was considered statistically significant when compared to TNF-α-treated cells (**p<0.01, ***p<0.001). Values represent mean ± SD based on three independent experiments performed in triplicate.

Similar articles

Cited by

References

    1. Weston RJ, Mitchell KR, Allen KL (1999) Antibacterial phenolic components of Nea Zealand manuka honey. Food Chem 64: 295–301.
    1. Swellam T, Miyanaga N, Onozawa M, Hattori K, Kawai K, et al. (2003) Antineoplastic activity of honey in an experimental bladder cancer implantation model: in vivo and in vitro studies. Int J Urol 10: 213–219. - PubMed
    1. Molan PC (2006) The evidence supporting the use of honey as a wound dressing. Int J Low Extrem Wounds 5: 40–54. - PubMed
    1. Kassim M, Achoui M, Mustafa MR, Mohd MA, Yusoff KM (2010) Ellagic acid, phenolic acids, and flavonoids in Malaysian honey extracts demonstrate in vitro anti-inflammatory activity. Nutr Res 30: 650–659. - PubMed
    1. Gheldof N, Wang XH, Engeseth NJ (2002) Identification and quantification of antioxidant components of honeys from various floral sources. J Agric Food Chem 50: 5870–5877. - PubMed

Publication types

MeSH terms

Grants and funding

Greek Secretariat of Research and Technology, Ministry of Development for financial support (Grant ESPA, SMEs 2009) in cooperation with the company “Attiki” Alex Pittas SA. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. This does not alter the authors’ adherence to PLOS ONE policies on sharing data and materials.
-