Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Nov 5:16:902.
doi: 10.1186/s12864-015-2184-y.

Construction of a high-density genetic map and mapping of a sex-linked locus for the brown alga Undaria pinnatifida (Phaeophyceae) based on large scale marker development by specific length amplified fragment (SLAF) sequencing

Affiliations

Construction of a high-density genetic map and mapping of a sex-linked locus for the brown alga Undaria pinnatifida (Phaeophyceae) based on large scale marker development by specific length amplified fragment (SLAF) sequencing

Tifeng Shan et al. BMC Genomics. .

Abstract

Background: Undaria pinnatifida is an important economic brown alga in East Asian countries. However, its genetic and genomic information is very scarce, which hinders further research in this species. A high-density genetic map is a basic tool for fundamental and applied research such as discovery of functional genes and mapping of quantitative trait loci (QTL). In this study the recently developed specific length amplified fragment sequencing (SLAF-seq) technology was employed to construct a high-density genetic linkage map and locate a sex determining locus for U. pinnatifida.

Results: A total of 28.06 Gb data including 140.31 M pair-end reads was obtained. After linkage analysis 4626 SLAF markers were mapped onto the genetic map. After adding the sex linked simple sequence repeat (SSR) marker [GenBank:AY738602.1], the final genetic map was 1816.28 cM long, consisting of 30 linkage groups with an average distance of 0.39 cM between adjacent markers. The length of LGs ranged from 20.12 to 106.95 cM. A major sex associated QTL was mapped to LG22 within a window starting at 29.01 cM and ending at 68.81 cM with a total of 68 SLAF markers. The SSR marker and five SLAF markers (Marker6556, 19020, 43089, 60771 and 26359) were identified as tightly sex-linked markers, as indicated by the absence of recombination between them and the sex phenotype. These markers were located at the position of 59.50 cM, which was supposed to be the sex determining region.

Conclusions: A high-density genetic linkage map was constructed using SLAF-seq technique and F1 gametophyte population for the first time in the economically important brown alga U. pinnatifida. For the first time, a major sex associated QTL suggesting a sex determining region was mapped to a single LG. This map will facilitate the further fundamental and applied research such as QTL mapping and map-based gene clone in U. pinnatifida and provide a reference for studies in other kelp species.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
The number of markers in each of eight segregation patterns
Fig. 2
Fig. 2
Distribution of SLAF markers on 30 linkage groups of Undaria pinnatifida. A black bar indicates a SLAF marker. The x-axis indicates linkage group number and the y-axis the map distance (cM)
Fig. 3
Fig. 3
QTL analysis of the sex phenotype on linkage groups. The x-axis indicates the linkage groups and the marker order. The horizontal gray line indicates the threshold of the LOD score (4.1) for significance (P = 0.01) at the whole genomic level
Fig. 4
Fig. 4
Linkage group 22 and the location of cosegregating markers with the sex phenotype

Similar articles

Cited by

References

    1. Yamanaka R, Akiyama K. Cultivation and utilization of Undaria pinnatifida (wakame) as food. J Appl Phycol. 1993;5(2):249–253. doi: 10.1007/BF00004026. - DOI
    1. Silva PC, Woodfield RA, Cohen AN, Harris LH, Goddard JHR. First report of the Asian kelp Undaria pinnatifida in the northeastern Pacific Ocean. Biol Invasions. 2002;4:333–338. doi: 10.1023/A:1020991726710. - DOI
    1. Veiga P, Torres A, Rubal M, Troncoso J, Sousa-Pinto I. The invasive kelp Undaria pinnatifida (Laminariales, Ochrophyta) along the north coast of Portugal: Distribution model versus field observations. Mar Pollut Bull. 2014;84(1):363–365. doi: 10.1016/j.marpolbul.2014.05.038. - DOI - PubMed
    1. Russell LK, Hepburn CD, Hurd CL, Stuart MD. The expanding range of Undaria pinnatifida in southern New Zealand: distribution, dispersal mechanisms and the invasion of wave-exposed environments. Biol Invasions. 2007;10(1):103–115. doi: 10.1007/s10530-007-9113-1. - DOI
    1. Voisin M, Engel CR, Viard F. Differential shuffling of native genetic diversity across introduced regions in a brown alga: aquaculture vs. maritime traffic effects. Proc Natl Acad Sci U S A. 2005;102(15):5432–5437. doi: 10.1073/pnas.0501754102. - DOI - PMC - PubMed

Publication types

LinkOut - more resources

-