Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Dec 7;10(12):e0143580.
doi: 10.1371/journal.pone.0143580. eCollection 2015.

Kinetics of Respiratory Syncytial Virus (RSV) Memphis Strain 37 (M37) Infection in the Respiratory Tract of Newborn Lambs as an RSV Infection Model for Human Infants

Affiliations

Kinetics of Respiratory Syncytial Virus (RSV) Memphis Strain 37 (M37) Infection in the Respiratory Tract of Newborn Lambs as an RSV Infection Model for Human Infants

Alejandro Larios Mora et al. PLoS One. .

Abstract

Rationale: Respiratory syncytial virus (RSV) infection in preterm and newborn infants can result in severe bronchiolitis and hospitalization. The lamb lung has several key features conducive to modeling RSV infection in human infants, including susceptibility to human strains of RSV such as the A2, Long, and Memphis Strain 37 (M37). In this study, the kinetics of M37 infection was investigated in newborn lambs in order to better define clinical, viral, physiological, and immunological parameters as well as the pathology and lesions.

Methods: Newborn lambs were nebulized with M37 hRSV (6 mL of 1.27 x 10(7) FFU/mL), monitored daily for clinical responses, and respiratory tissues were collected from groups of lambs at days 1, 3, 4, 6, and 8 post-inoculation for the assessment of viral replication parameters, lesions and also cellular, immunologic and inflammatory responses.

Results: Lambs had increased expiratory effort (forced expiration) at days 4, 6, and 8 post-inoculation. Nasal wash lacked RSV titers at day 1, but titers were present at low levels at days 3 (peak), 4, and 8. Viral titers in bronchoalveolar lavage fluid (BALF) reached a plateau at day 3 (4.6 Log10 FFU/mL), which was maintained until day 6 (4.83 Log10 FFU/mL), and were markedly reduced or absent at day 8. Viral RNA levels (detected by RT-qPCR) in BALF were indistinguishable at days 3 (6.22 ± 0.08 Log10 M37 RNA copies/mL; mean ± se) and 4 (6.20 ± 0.16 Log10 M37 RNA copies/mL; mean ± se) and increased slightly on day 6 (7.15 ± 0.2 Log10 M37 RNA copies/mL; mean ± se). Viral antigen in lung tissue as detected by immunohistochemistry was not seen at day 1, was present at days 3 and 4 before reaching a peak by day 6, and was markedly reduced by day 8. Viral antigen was mainly present in airways (bronchi, bronchioles) at day 3 and was increasingly present in alveolar cells at days 4 and 6, with reduction at day 8. Histopathologic lesions such as bronchitis/bronchiolitis, epithelial necrosis and hyperplasia, peribronchial lymphocyte infiltration, and syncytial cells, were consistent with those described previously for lambs and infants.

Conclusion: This work demonstrates that M37 hRSV replication in the lower airways of newborn lambs is robust with peak replication on day 3 and sustained until day 6. These findings, along with the similarities of lamb lung to those of infants in terms of alveolar development, airway branching and epithelium, susceptibility to human RSV strains, lesion characteristics (bronchiolitis), lung size, clinical parameters, and immunity, further establish the neonatal lamb as a model with key features that mimic RSV infection in infants.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: L.D. is a current employee of Ablynx and owns stock/stock options of Ablynx. T.S. was an employee of Ablynx at the time of data generation. A.L.M., A.V.G., M.S.D., J.M.G., and M.R.A. undertook this work as part of a research contract with Ablynx. This does not alter the authors' adherence to PLOS ONE policies on sharing data and materials.

Figures

Fig 1
Fig 1. Respiratory distress score of lambs inoculated with human respiratory syncytial virus (hRSV) strain Memphis 37 (M37).
Respiratory distress score was assessed daily for each lamb by auscultation or visual observation, and was categorized by expiratory effort (A) and wheezing (B). Results are shown as mean ± standard error.
Fig 2
Fig 2. Viral gross lesions caused by M37 hRSV infection in neonatal lambs.
(A) Picture of a lung on day 6 post-infection. Dark plum-red, well-demarcated foci of pulmonary consolidation are indicated by arrowheads. (B) Percentage parenchymal involvement was estimated for each lung lobe and mean percentage averages per lobe were calculated for each day of necropsy (± standard error). Legend: Rt Cr = Right cranial lobe; Rt Mid = Right Middle lobe; Rt Cd = Right Caudal lobe; Acc = Accessory lobe; Lt Cr = Left Cranial lobe; Lt Mid = Left Middle lobe; Lt Cd = Left Caudal lobe.
Fig 3
Fig 3. Microscopic lung lesions severity score in M37 hRSV infected neonatal lambs.
(A) Histopathologic lesions included bronchiolitis with degenerate/necrotic individual epithelial cells (thin arrow), occasional syncytial cells (long arrow), accumulation of degenerate neutrophils (short arrow), and occasional macrophages. H&E Bar = 50 μm. (B) A histologic score was given by determining percent consolidation followed by conversion to an integer-based consolidation scale used by our laboratory previously [1]: 0% consolidation = 0; 1%-9% consolidation = 1; 10%-39% consolidation = 2; 40%-69% consolidation = 3; 70%-100% consolidation = 4. Group averages were calculated for alveolar and bronchiolar consolidation scores. In addition to the consolidation score, bronchitis, bronchiolitis, neutrophil infiltration, peribronchiolar and perivascular infiltration of lymphocytes, syncytial cell formation, and epithelial alterations were also scored. Results are indicated as mean ± standard error for each scored parameter.
Fig 4
Fig 4. Immunohistochemistry and scoring of RSV antigen expression in lambs inoculated with M37 hRSV.
Immunohistochemistry was used to detect viral antigen using an all-antigens polyclonal antibody for RSV. (A) RSV immunoreactivity is shown within epithelial cells lining the bronchioles (brown cells). Bar = 50 μm (B) The mean number of virally-infected bronchi/bronchioles and alveoli per field was counted for each day of necropsy.
Fig 5
Fig 5. Lung chemokine mRNA expression assessed by RT-qPCR in lambs inoculated with M37 hRSV.
Lung tissue obtained from each animal was evaluated for the following mRNA targets: surfactant protein A (SP-A), surfactant protein D (SP-D), interleukin 8 (IL-8), interleukin 10 (IL-10), macrophage inflammatory protein 1 alpha (MIP-1α), monocyte chemotactic protein 1 alpha (MCP-1α), tumor necrosis factor alpha (TNF-α), transforming growth factor beta (TGF-β), interferon beta (IFN-β), interferon gamma (IFN-γ), programmed cell death 1 ligand 1 (PD-L1), and regulated on activation normal T-cell expressed and secreted (RANTES). Mean relative mRNA expression was calculated for each target with respect to each day of necropsy. Relative mRNA expression means: relative to the total amount of RNA loaded per reaction (which is kept constant) and relative to the values established by the standard curves for each target.

Similar articles

Cited by

References

    1. Derscheid RJ, van Geelen A, Gallup JM, Kienzle T, Shelly DA, Cihlar T, et al. Human respiratory syncytial virus memphis 37 causes acute respiratory disease in perinatal lamb lung. Biores Open Access. 2014;3(2):60–9. Epub 2014/05/08. 10.1089/biores.2013.0044 - DOI - PMC - PubMed
    1. Dudas RA, Karron RA. Respiratory syncytial virus vaccines. Clin Microbiol Rev. 1998;11(3):430–9. Epub 1998/07/17. - PMC - PubMed
    1. Nair H, Nokes DJ, Gessner BD, Dherani M, Madhi SA, Singleton RJ, et al. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. Lancet. 2010;375(9725):1545–55. Epub 2010/04/20. 10.1016/S0140-6736(10)60206-1 - DOI - PMC - PubMed
    1. Goldmann DA. Epidemiology and prevention of pediatric viral respiratory infections in health-care institutions. Emerg Infect Dis. 2001;7(2):249–53. Epub 2001/04/11. 10.3201/eid0702.700249 - DOI - PMC - PubMed
    1. Prevention CfDCa. Respiratory Syncytial Virus Infection (RSV). Infection and Incidence [cited 2014 December 4]. Available from: www.cdc.gov/rsv/about/infection.html.

Publication types

MeSH terms

Grants and funding

This work was funded by Ablynx, NV and by the “Agentschap voor Innovatie door Wetenschap en Techniek (IWT)” – Belgium - grant N° 130562. Ablynx had a role in the study design, data collection and analysis, decision to publish, and preparation of the manuscript. The specific roles of the authors are articulated in the ‘author contributions’ section.
-