Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Mar;125(3):370-377.
doi: 10.1289/EHP351. Epub 2016 Oct 13.

Poultry Consumption and Arsenic Exposure in the U.S. Population

Affiliations

Poultry Consumption and Arsenic Exposure in the U.S. Population

Anne E Nigra et al. Environ Health Perspect. 2017 Mar.

Abstract

Background: Arsenicals (roxarsone and nitarsone) used in poultry production likely increase inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), and roxarsone or nitarsone concentrations in poultry meat. However, the association between poultry intake and exposure to these arsenic species, as reflected in elevated urinary arsenic concentrations, is unknown.

Objectives: Our aim was to evaluate the association between 24-hr dietary recall of poultry consumption and arsenic exposure in the U.S. population. We hypothesized first, that poultry intake would be associated with higher urine arsenic concentrations and second, that the association between turkey intake and increased urine arsenic concentrations would be modified by season, reflecting seasonal use of nitarsone.

Methods: We evaluated 3,329 participants ≥ 6 years old from the 2003-2010 National Health and Nutrition Examination Survey (NHANES) with urine arsenic available and undetectable urine arsenobetaine levels. Geometric mean ratios (GMR) of urine total arsenic and DMA were compared across increasing levels of poultry intake.

Results: After adjustment, participants in the highest quartile of poultry consumption had urine total arsenic 1.12 (95% CI: 1.04, 1.22) and DMA 1.13 (95% CI: 1.06, 1.20) times higher than nonconsumers. During the fall/winter, participants in the highest quartile of turkey intake had urine total arsenic and DMA 1.17 (95% CI: 0.99, 1.39; p-trend = 0.02) and 1.13 (95% CI: 0.99, 1.30; p-trend = 0.03) times higher, respectively, than nonconsumers. Consumption of turkey during the past 24 hr was not associated with total arsenic or DMA during the spring/summer.

Conclusions: Poultry intake was associated with increased urine total arsenic and DMA in NHANES 2003-2010, reflecting arsenic exposure. Seasonally stratified analyses by poultry type provide strong suggestive evidence that the historical use of arsenic-based poultry drugs contributed to arsenic exposure in the U.S.

Citation: Nigra AE, Nachman KE, Love DC, Grau-Perez M, Navas-Acien A. 2017. Poultry consumption and arsenic exposure in the U.S. Environ Health Perspect 125:370-377; http://dx.doi.org/10.1289/EHP351.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no actual or potential competing financial interests.

Figures

Figure 1
Figure 1
Geometric mean ratio (95% confidence interval) of urine total arsenic (As) and dimethylarsinate (DMA) by poultry intake in the past 24 hr. Lines represent the geometric mean ratio of urinary arsenical concentrations by levels of poultry intake (grams/kilogram body weight/day), based on restricted quadratic spline models with knots at the 10th, 50th, and 90th percentiles of natural log–transformed poultry intake (left y-axis). Blue shaded areas surrounding the lines represent 95% confidence intervals. Shaded gray bars represent the distribution of poultry intake (grams/kilogram body weight) within the study population and are shown as “percent exposed participants” in the right y-axis. Geometric mean ratios were adjusted for urinary creatinine (natural log–transformed continuous), age (continuous), sex (male/female), race/ethnicity (non-Hispanic white/non-Hispanic black/Mexican-American/other, including multiple), education (< high school/high school or equivalent/> high school), body mass index (continuous), smoking status (never/former/current), serum cotinine (natural log–transformed continuous), poverty income ratio (PIR, continuous), tap water source (community supply/well, cistern/spring/other/no tap water), and past 24 hr intake of rice, cereal, juice, and wine (grams/kilogram body weight, continuous). Poultry, rice, juice, and wine intake were derived from Food Commodity Index Database (FCID) codes and analyzed in grams/kilogram body weight/day. Cereal intake was derived from U.S. Department of Agriculture food codes, because no FCID code exists for cereal, and were analyzed in grams/kilogram body weight/day.
Figure 2
Figure 2
Geometric mean ratio (GMR) [95% confidence interval (CI)] of urine total arsenic and dimethylarsinate (DMA) concentrations comparing an interquartile range of poultry intake (75th to 25th percentile of poultry intake, grams/kilogram body weight) by participant subgroups. Models were adjusted for urinary creatinine (natural log–transformed continuous), age (continuous), sex (male/female), race/ethnicity (non-Hispanic white/non-Hispanic black/Mexican-American/other, including multiple), education (< high school/high school or equivalent/> high school), body mass index (continuous), smoking status (never/former/current), serum cotinine (natural log–transformed continuous), poverty income ratio (PIR, continuous), tap water source (community supply/well, cistern/spring/other/no tap water), and past 24-hr intake of rice, cereal, juice, and wine (grams/kilogram body weight, continuous). Poultry, rice, juice, and wine intake were derived from Food Commodity Index Database (FCID) codes and analyzed in grams/kilogram body weight/day. Cereal intake was derived from U.S. Department of Agriculture food codes, becuase no FCID code exists for cereal, and were analyzed in grams/kilogram body weight/day. For each subgroup analysis, the variable of interest was replaced by the subgroup indicator (e.g., age, modeled in three categories) and the interaction of the subgroups with poultry intake (continuous, grams/kilogram body weight).

Similar articles

Cited by

References

    1. Abraham M, McDougald L, Beckstead R. Blackhead disease: reduced sensitivity of Histomonas meleagridis to nitarsone in vitro and in vivo. Avian Dis. 2013;58(1):60–63. - PubMed
    1. Ahmad SA, Sayed MH, Barua S, Khan MH, Faruquee MH, Jalil A, et al. Arsenic in drinking water and pregnancy outcomes. Environ Health Perspect. 2001;109:629–631. - PMC - PubMed
    1. Alter v. Pfizer Inc. No. CV-2012-67. (Arkansas County Circuit Court, 24 September 2012). http://www.hwnn.com/images/stories/hwnn/amended_complaint.pdf [accessed 28 October 2015]
    1. Arai Y, Lanzirotti A, Sutton S, Davis JA, Sparks DL. Arsenic speciation and reactivity in poultry litter. Environ Sci Technol. 2003;37(18):4083–4090. - PubMed
    1. ATSDR (Agency for Toxic Substances and Disease Registry) Atlanta, GA: ATSDR; 2007. Toxicological Profile for Arsenic. http://www.atsdr.cdc.gov/ToxProfiles/tp2.pdf [accessed 30 July 2015] - PubMed

Publication types

-