Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Feb:100:173-181.
doi: 10.1016/j.peptides.2017.11.021.

Glucose-dependent insulinotropic polypeptide (GIP) receptor antagonists as anti-diabetic agents

Affiliations
Review

Glucose-dependent insulinotropic polypeptide (GIP) receptor antagonists as anti-diabetic agents

Lærke Smidt Gasbjerg et al. Peptides. 2018 Feb.

Abstract

Glucose-dependent insulinotropic polypeptide (GIP) is an intestinal hormone with a broad range of physiological actions. In the postprandial state, the hormone stimulates insulin secretion and during eu- and hypoglycemia, it stimulates glucagon secretion. In addition, GIP increases triacylglycerol (TAG) uptake in adipose tissue and decreases bone resorption. However, the importance of these actions in humans are not clearly understood as a specific GIP receptor (GIPR) antagonist - an essential tool to study GIP physiology - has been missing. Several different GIPR antagonists have been identified comprising both peptides, vaccines against GIP, GIP antibodies or antibodies against the GIPR. However, most of these have only been tested in rodents. In vitro, N- and C-terminally truncated GIP variants are potent and efficacious GIPR antagonists. Recently, GIP(3-30)NH2, a naturally occurring peptide, was shown to block the GIPR in humans and decrease GIP-induced insulin secretion as well as adipose tissue blood flow and TAG uptake. So far, there are no studies with a GIPR antagonist in patients with type 2 diabetes (T2D), but because the elevations in fasting plasma glucagon and paradoxical postprandial glucagon excursions, seen in patients with T2D, are aggravated by GIP, a GIPR antagonist could partly alleviate this and possibly improve the fasting and postprandial glycemia. Since the majority of patients with T2D are overweight, inhibition of GIP-induced fat deposition may be beneficial as well. Here we summarize the studies of GIPR antagonists and discuss the therapeutic potential of the GIP system in humans.

Keywords: GIP receptor; GIP receptor antagonist; Glucose-dependent insulinotropic polypeptide (GIP); Obesity therapy; Type 2 diabetes therapy.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources

-