Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Mar 14;25(1):186-203.
doi: 10.26444/aaem/85651. Epub 2018 Mar 2.

Streptococcus suis: a re-emerging pathogen associated with occupational exposure to pigs or pork products. Part II - Pathogenesis

Affiliations
Free article
Review

Streptococcus suis: a re-emerging pathogen associated with occupational exposure to pigs or pork products. Part II - Pathogenesis

Jacek Dutkiewicz et al. Ann Agric Environ Med. .
Free article

Abstract

Streptococcus suis is a re-emerging zoonotic pathogen that may cause severe disease, mostly meningitis, in pigs and in humans having occupational contact with pigs and pork, such as farmers, slaughterhose workers and butchers. The first stage of the pathogenic process, similar in pigs and humans, is adherence to and colonisation of mucosal and/or epithelial surface(s) of the host. The second stage is invasion into deeper tissue and extracellular translocation of bacterium in the bloodstream, either free in circulation or attached to the surface of monocytes. If S. suis present in blood fails to cause fatal septicaemia, it is able to progress into the third stage comprising penetration into host's organs, mostly by crossing the blood-brain barrier and/or blood-cerebrospinal fluid barrier to gain access to the central nervous system (CNS) and cause meningitis. The fourth stage is inflammation that plays a key role in the pathogen esis of both systemic and CNS infections caused by S. suis. The pathogen may induce the overproduction of pro-inflammatory cytokines that cause septic shock and/or the recruitment and activation of different leukocyte populations, causing acute inflammation of the CNS. Streptococcus suis can also evoke - through activation of microglial cells, astrocytes and possibly other cell types - a fulminant inflammatory reaction of the brain which leads to intracranial complications, including brain oedema, increased intracranial pressure, cerebrovascular insults, and deafness, as a result of cochlear sepsis. In all stages of the pathogenic process, S. suis interacts with many types of immunocompetent host's cells, such as polymorphonuclear leukocytes, mononuclear macrophages, lymphocytes, dendritic cells and microglia, using a range of versatile virulence factors for evasion of the innate and adaptive immune defence of the host, and for overcoming environmental stress. It is estimated that S. suis produces more than 100 different virulence factors that could be classified into 4 groups: surface components or secreted elements, enzymes, transcription factors or regulatory systems and transporter factors or secretion systems. A major virulence factor is capsular polysaccharide (CPS) that protects bacteria from phagocytosis. However, it hampers adhesion to and invasion of host's cells, release of inflammatory cytokines and formation of the resistant biofilm which, in many cases, is vital for the persistence of bacteria. It has been demonstrated that the arising by mutation unencapsulated S. suis clones, which are more successful in penetration to and propagation within the host's cells, may coexist in the organism of a single host together with those that are encapsulated. Both 'complementary' clones assist each other in the successful colonization of host's tissues and persistence therein. S. suis has an open pan-genome characterized by a frequent gene transfer and a large diversity. Of the genetic determinants of S. suis pathogenicity, the most important are pathogenicity islands (PAI), in particular, a novel DNA segment of 89 kb length with evident pathogenic traits that has been designated as 89K PAI. It has been estimated that more than one-third of the S. suis virulence factors is associated with this PAI. It has been proved that the virulent S. suis strains possess smaller genomes, compared to avirulent ones, but more genes associated with virulence. Overall, the evolution of the species most probably aims towards increased pathogenicity, and hence the most significant task of the current research is an elaboration of a vaccine, efficient both for humans and pigs.

Keywords: Streptococcus suis; biofilm formation; genomic determinants of pathogenicity; infection stages; interaction with host cells and tissues; pathogenesis; virulence factors.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources

-