Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jul-Sep;22(3):338-345.
doi: 10.1016/j.jocd.2019.02.001. Epub 2019 Feb 8.

Fracture Risk Indices From DXA-Based Finite Element Analysis Predict Incident Fractures Independently From FRAX: The Manitoba BMD Registry

Affiliations

Fracture Risk Indices From DXA-Based Finite Element Analysis Predict Incident Fractures Independently From FRAX: The Manitoba BMD Registry

William D Leslie et al. J Clin Densitom. 2019 Jul-Sep.

Abstract

Objective: Finite element analysis (FEA) is a computational method to predict the behavior of materials under applied loading. We developed a software tool that automatically performs FEA on dual-energy X-ray absorptiometry hip scans to generate site-specific fracture risk indices (FRIs) that reflect the likelihood of hip fracture from a sideways fall. This longitudinal study examined associations between FRIs and incident fractures.

Methods: Using the Manitoba Bone Mineral Density (BMD) Registry, femoral neck (FN), intertrochanter (IT), and subtrochanter (ST) FRIs were automatically derived from 13,978 anonymized dual-energy X-ray absorptiometry scans (Prodigy, GE Healthcare) in women and men aged 50 yr or older (mean age 65 yr). Baseline covariates and incident fractures were assessed from population-based data. We compared c-statistics for FRIs vs FN BMD alone and fracture risk assessment (FRAX) probability computed with BMD. Cox regression was used to estimate hazard ratios and 95% confidence intervals (95% CIs) for incident hip, major osteoporotic fracture (MOF) and non-hip MOF adjusted for relevant covariates including age, sex, FN BMD, FRAX probability, FRAX risk factors, and hip axis length (HAL).

Results: During mean follow-up of 6 yr, there were 268 subjects with incident hip fractures, 1003 with incident MOF, and 787 with incident non-hip MOF. All FRIs gave significant stratification for hip fracture (c-statistics FN-FRI: 0.76, 95% CI 0.73-0.79, IT-FRI 0.74, 0.71-0.77; ST-FRI 0.72, 0.69-0.75). FRIs continued to predict hip fracture risk even after adjustment for age and sex (hazard ratio per standard deviation FN-FRI 1.89, 95% CI 1.66-2.16); age, sex, and BMD (1.26, 1.07-1.48); FRAX probability (1.30, 1.11-1.52); FRAX probability with HAL (1.26, 1.05-1.51); and individual FRAX risk factors (1.32, 1.09-1.59). FRIs also predicted MOF and non-hip MOF, but the prediction was not as strong as for hip fracture.

Summary: Automatically-derived FN, IT, and ST FRIs are associated with incident hip fracture independent of multiple covariates, including FN BMD, FRAX probability and risk factors, and HAL.

Keywords: Dual-energy X-ray absorptiometry; FRAX; finite element analysis; fracture risk; hip fracture; osteoporosis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources

-