Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Oct;111(5):804-811.
doi: 10.17269/s41997-019-00280-7. Epub 2020 Jan 6.

Pulse oximetry screening for critical congenital heart defects in Ontario, Canada: a cost-effectiveness analysis

Affiliations

Pulse oximetry screening for critical congenital heart defects in Ontario, Canada: a cost-effectiveness analysis

Amit Mukerji et al. Can J Public Health. 2020 Oct.

Abstract

Objective: Previously conducted cost-effectiveness analyses of pulse oximetry screening (POS) for critical congenital heart defects (CCHDs) have shown it to be a cost-effective endeavour, but the geographical setting of Ontario in relation to its vast yet sparsely populated regions presents unique challenges. The objective of this study was to estimate the cost-effectiveness of POS for CCHD in Ontario, Canada.

Methods: A cost-effectiveness analysis, comparing POS to no POS, was conducted from the Ontario healthcare payer perspective using a Markov model. The base case was defined as a well-appearing newborn at 24 h of age. Outcome measures, including quality-adjusted life months (QALMs), lifetime costs, and incremental cost-effectiveness ratios (ICER) [ΔCost/ΔQALMs], were calculated over a lifetime horizon. All outcomes were discounted at 1.5% per year. Cost-effectiveness was assessed using an a priori ICER threshold of CAD$4166.67 per QALM (equivalent to CAD$50,000 per quality-adjusted life year). Deterministic and probabilistic sensitivity analyses were conducted to assess parameter uncertainty.

Results: Implementation of POS is expected to lead to timely diagnosis of 51 CCHD cases annually. The incremental cost of performing POS was estimated to be $27.27 per screened individual, with a gain of 0.02455 QALMs. This yielded an ICER of CAD$1110.79 per QALM, well below the pre-determined threshold. The probabilistic sensitivity analysis estimated a 92.3% chance of routine implementation of POS being cost-effective.

Conclusion: Routine implementation of POS for CCHD in Ontario is expected to be cost-effective.

Objectif: Les analyses coût-efficacité du dépistage par oxymétrie de pouls (DOP) des cardiopathies congénitales critiques (CCC) menées antérieurement ont montré que c’est une technique efficace par rapport à son coût, mais l’emplacement géographique de l’Ontario, avec ses vastes régions à faible densité de population, présente des difficultés particulières. Nous avons donc cherché à estimer le rapport coût-efficacité du DOP des CCC en Ontario, au Canada.

Méthode: Une analyse coût-efficacité comparant le DOP à l’absence de DOP a été menée selon la perspective des contribuables payant pour les soins de santé en Ontario à l'aide d’un modèle de Markov. Le scénario de référence était celui d’un nouveau-né apparemment bien portant âgé de 24 heures. Les indicateurs de résultat, dont les mois de vie pondérés par la qualité (MVPQ), les coûts à vie et les rapports coût-efficacité différentiels (RCED) [ΔCoût / ΔMVPQ], ont été calculés pour l’horizon temporel de la vie entière. Tous les résultats ont été actualisés à 1,5 % par année. L’efficacité par rapport au coût a été évaluée a priori à l'aide d’un seuil de RCED de 4 166,67 $CAN par MVPQ (équivalant à 50 000 $CAN par année de vie pondérée par la qualité). Des analyses de sensibilité déterministes et probabilistes ont été menées pour évaluer l’incertitude des paramètres.

Résultats: La mise en œuvre du DOP devrait mener au diagnostic opportun de 51 cas de CCC par année. Le coût différentiel du DOP était estimé à 27,27 $ par personne dépistée, avec un gain de 0,02455 MVPQ. Cela donne un RCED de 1 110,79 $CAN par MVPQ, très en-deçà du seuil prédéterminé. L’analyse de sensibilité probabiliste a estimé à 92,3 % la probabilité que la mise en œuvre systématique du DOP soit efficace par rapport au coût.

Conclusion: On peut s’attendre à ce que la mise en œuvre systématique du DOP pour les CCC en Ontario soit efficace par rapport au coût.

Keywords: Cost-effectiveness threshold; Cost-utility analysis; Health economics; Saturation screening; Utility.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no conflicts of interest.

Figures

Fig. 1
Fig. 1
Illustration of decision tree during first Markov cycle and various possible outcomes (including need for transfers) in a simulated individual who has CCHD
Fig. 2
Fig. 2
Panel a illustrates possible outcomes after missed CCHD incorporated into first cycle of Markov decision model. Panel b shows the possible outcomes of CCHD surgery incorporated into first cycle of Markov model. Note than in both Figs. 1 and 2, the circles represent a “chance” node with a certain probability associated with either arm emanating from that node being chosen (determined by the values for probabilities inputted into the model) while the triangles represent a “terminal” node, culminating in the transition to another health state
Fig. 3
Fig. 3
Illustration of the possible transitions (denoted by arrows) among the 4 health states in subsequent Markov cycles
Fig. 4
Fig. 4
Cost-effectiveness scatter plot. Note: Each dot represents the incremental cost and incremental effectiveness (QALM) from each simulation, and all simulation values “below” the line of cost-effectiveness threshold are deemed to be cost-effective, whereas the ones above the threshold line represent simulations where ICER for POS implementation was above the pre-determined threshold value
Fig. 5
Fig. 5
Cost-effectiveness acceptability at various cost-effectiveness (or “willingness to pay”) thresholds

Similar articles

Cited by

References

    1. Brown KL, Ridout DA, Hoskote A, Verhulst L, Ricci M, Bull C. Delayed diagnosis of congenital heart disease worsens preoperative condition and outcome of surgery in neonates. Heart. 2006;92:1298–1302. doi: 10.1136/hrt.2005.078097. - DOI - PMC - PubMed
    1. Cohen EMA, Shah V, Geraghty M, Sheng L, Rahman F, Kumar M, Jain A, Guttmann A. Towards pulse oximetry screening in Ontario, Canada: what is the burden of missed critical congenital heart disease? Toronto: Institute for Clinical Evaluative Sciences; 2015.
    1. de-Wahl Granelli A, Wennergren M, Sandberg K, et al. Impact of pulse oximetry screening on the detection of duct dependent congenital heart disease: a Swedish prospective screening study in 39,821 newborns. BMJ (Clinical Research ed) 2009;338:a3037. doi: 10.1136/bmj.a3037. - DOI - PMC - PubMed
    1. Ewer AK, Furmston AT, Middleton LJ, et al. Pulse oximetry as a screening test for congenital heart defects in newborn infants: a test accuracy study with evaluation of acceptability and cost-effectiveness. Health Technology Assessment (Winchester) 2012;16:v–xiii. - PubMed
    1. Fixler DE, Xu P, Nembhard WN, Ethen MK, Canfield MA. Age at referral and mortality from critical congenital heart disease. Pediatrics. 2014;134:e98–e105. doi: 10.1542/peds.2013-2895. - DOI - PubMed

Publication types

-