Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jan;40(1):19-27.
doi: 10.1007/s00299-020-02604-1. Epub 2020 Sep 25.

Recent advances in plant thermomemory

Affiliations
Review

Recent advances in plant thermomemory

Anand Nishad et al. Plant Cell Rep. 2021 Jan.

Abstract

This review summarizes the process of thermal acquired tolerance in plants and the knowledge gap compared to systemic acquired resistance that a plant shows after pathogen inoculation. Plants are continuously challenged by several biotic stresses such as pests and pathogens, or abiotic stresses like high light, UV radiation, drought, salt, and very high or low temperature. Interestingly, for most stresses, prior exposure makes plants more tolerant during the subsequent exposures, which is often referred to as acclimatization. Research of the last two decades reveals that the memory of most of the stresses is associated with epigenetic changes. Heat stress causes damage to membrane proteins, denaturation and inactivation of various enzymes, and accumulation of reactive oxygen species leading to cell injury and death. Plants are equipped with thermosensors that can recognize certain specific changes and activate protection machinery. Phytochrome and calcium signaling play critical roles in sensing sudden changes in temperature and activate cascades of signaling, leading to the production of heat shock proteins (HSPs) that keep protein-unfolding under control. Heat shock factors (HSFs) are the transcription factors that read the activation of thermosensors and induce the expression of HSPs. Epigenetic modifications of HSFs are likely to be the key component of thermal acquired tolerance (TAT). Despite the advances in understanding the process of thermomemory generation, it is not known whether plants are equipped with systemic activation thermal protection, as happens in the form of systemic acquired resistance (SAR) upon pathogen infection. This review describes the recent advances in the understanding of thermomemory development in plants and the knowledge gap in comparison with SAR.

Keywords: Heat stress; Histone modifications; Stress priming; Systemic acquired resistance; Thermal acquired tolerance; Thermosensing.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Banday ZZ, Nandi AK (2015) Interconnection between flowering time control and activation of systemic acquired resistance. Front Plant Sci 6:174 - PubMed - PMC
    1. Baniwal SK, Bharti K, Chan KY, Fauth M, Ganguli A, Kotak S, Mishra SK, Nover L, Port M, Scharf KD, Tripp J, Weber C, Zielinski D, von Koskull-Döring P (2004) Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J Biosci 29:471–487 - PubMed
    1. Bäurle I, Trindade I (2020) Chromatin regulation of somatic abiotic stress memory. J Exp Bot 71(17):5269–5279. https://doi.org/10.1093/jxb/eraa098 - DOI - PubMed
    1. Bernfur K, Rutsdottir G, Emanuelsson C (2017) The chloroplast-localized small heat shock protein Hsp21 associates with the thylakoid membranes in heat-stressed plants. Protein Sci 26:1773–1784 - PubMed - PMC
    1. Blakeslee JJ, Spatola Rossi T, Kriechbaumer V (2019) Auxin biosynthesis: spatial regulation and adaptation to stress. J Exp Bot 70:5041–5049 - PubMed

MeSH terms

LinkOut - more resources

-