Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Mar;27(3):862-871.
doi: 10.3201/eid2703.202314.

Isolate-Based Surveillance of Bordetella pertussis, Austria, 2018-2020

Isolate-Based Surveillance of Bordetella pertussis, Austria, 2018-2020

Adriana Cabal et al. Emerg Infect Dis. 2021 Mar.

Abstract

Pertussis is a vaccine-preventable disease, and its recent resurgence might be attributable to the emergence of strains that differ genetically from the vaccine strain. We describe a novel pertussis isolate-based surveillance system and a core genome multilocus sequence typing scheme to assess Bordetella pertussis genetic variability and investigate the increased incidence of pertussis in Austria. During 2018-2020, we obtained 123 B. pertussis isolates and typed them with the new scheme (2,983 targets and preliminary cluster threshold of <6 alleles). B. pertussis isolates in Austria differed genetically from the vaccine strain, both in their core genomes and in their vaccine antigen genes; 31.7% of the isolates were pertactin-deficient. We detected 8 clusters, 1 of them with pertactin-deficient isolates and possibly part of a local outbreak. National expansion of the isolate-based surveillance system is needed to implement pertussis-control strategies.

Keywords: Austria; Bordetella pertussis; acellular vaccines; bacteria; cgMLST; clusters; core-genome multilocus sequence typing; respiratory infections; surveillance; vaccine-preventable diseases; vaccines.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Flow chart of the Bordetella pertussis isolate–based surveillance system, Austria, May 2018–May 2020. AGES, Agentur für Gesundheit und Ernährungssicherheit (Austrian Agency for Health and Food Safety); cgMLST, core-genome multilocus sequence typing; ST, sequence type.
Figure 2
Figure 2
Pertussis cases by district of residence of case-patient and genetic profile of the corresponding Bordetella pertussis isolate identified in a B. pertussis isolate–based surveillance study, Austria, May 2018–May 2020. Each dot represents 1 case. Cases grouping next to each other belong to the same district. To protect patient confidentiality, only states and not districts are labeled.
Figure 3
Figure 3
Minimum spanning tree of 123 Bordetella pertussis isolates and their clusters by genetic profile based on core-genome multilocus sequence typing in a B. pertussis isolate–based surveillance study, Austria, May 2018–May 2020. Numbers on connection lines represent the number of allelic differences among the isolates.
Figure 4
Figure 4
Maximum-likelihood phylogenetic tree generated using core-genome multilocus sequence typing data from 106 outbreak genome sequences from the United States and the United Kingdom and the 123 Bordetella pertussis isolates identified in an isolate-based surveillance study, Austria, May 2018–May 2020. Isolate identifiers are colored by genetic profile. These genetic profiles include profiles A–I, defined in this study, and other genetic profiles described outside of Austria. The circular blue line represents isolates of fim3-1 lineage; the circular red line represents fim3-1 isolates. A color-coded house-like symbol indicates isolates obtained from case-patients living in the same household. Scale bar indicates nucleotide substitutions per site.

Similar articles

Cited by

References

    1. Kilgore PE, Salim AM, Zervos MJ, Schmitt HJ. Pertussis: microbiology, disease, treatment, and prevention. Clin Microbiol Rev. 2016;29:449–86. 10.1128/CMR.00083-15 - DOI - PMC - PubMed
    1. Paisley RD, Blaylock J, Hartzell JD. Whooping cough in adults: an update on a reemerging infection. Am J Med. 2012;125:141–3. 10.1016/j.amjmed.2011.05.008 - DOI - PubMed
    1. Lee AD, Cassiday PK, Pawloski LC, Tatti KM, Martin MD, Briere EC, et al.; Clinical Validation Study Group. Clinical evaluation and validation of laboratory methods for the diagnosis of Bordetella pertussis infection: Culture, polymerase chain reaction (PCR) and anti-pertussis toxin IgG serology (IgG-PT). PLoS One. 2018;13:e0195979. 10.1371/journal.pone.0195979 - DOI - PMC - PubMed
    1. Mir-Cros A, Moreno-Mingorance A, Martín-Gómez MT, Codina G, Cornejo-Sánchez T, Rajadell M, et al. Population dynamics and antigenic drift of Bordetella pertussis following whole cell vaccine replacement, Barcelona, Spain, 1986-2015. Emerg Microbes Infect. 2019;8:1711–20. 10.1080/22221751.2019.1694395 - DOI - PMC - PubMed
    1. Wagner B, Melzer H, Freymüller G, Stumvoll S, Rendi-Wagner P, Paulke-Korinek M, et al. Genetic variation of Bordetella pertussis in Austria. PLoS One. 2015;10:e0132623. 10.1371/journal.pone.0132623 - DOI - PMC - PubMed

Substances

LinkOut - more resources

-