Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 May 7;13(17):8126-8136.
doi: 10.1039/d1nr00867f. Epub 2021 Apr 21.

Anisotropic bacterial cellulose hydrogels with tunable high mechanical performances, non-swelling and bionic nanofluidic ion transmission behavior

Affiliations

Anisotropic bacterial cellulose hydrogels with tunable high mechanical performances, non-swelling and bionic nanofluidic ion transmission behavior

Minghao Zhang et al. Nanoscale. .

Abstract

Water-rich hydrogels with tissue-like softness, especially ion conductive hydrogels with ion signal transfer systems similar to biological areas, are promising soft electrode materials, while too poor or unstable mechanical properties that come from uncontrollable swelling and biocompatibility issues caused by introducing high concentration ions are serious obstacles in practical applications. Herein, a simple method for fabricating strong, stable, ion-conductive, anisotropic bacterial cellulose hydrogels (ABCHs) is first reported. Relying on nanofibers with high aspect ratio in bacterial cellulose (BC), a tailor-made nanofiber-network-reinforced structure is constructed by controlled dissolution, followed by aligning them well via a simple fossilizing process under stretching. Therefore, tunable high mechanical performances can be achieved and the maximum tensile strength can reach 14.3 MPa with 70% water content. It is worth noting that ABCHs will not swell in water for 30 days and maintain 93% tensile strength. Most importantly, the unique nanofluid behaviors from nanochannels in nanofibers allow effective ion transport in ABCHs relying only on low concentrations of ions in body fluids (<300 mM), avoiding sacrificing biocompatibility to achieve useful conductivity. This facile strategy might be very scalable in fabricating high-strength, non-swelling, bio-ion conductive cellulose hydrogels for application in next-generation bio-interfacing and flexible implantable devices.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources

-