Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jun 2;13(2):518-539.
doi: 10.3390/idr13020049.

Diagnosis of Herpes Simplex Virus: Laboratory and Point-of-Care Techniques

Affiliations
Review

Diagnosis of Herpes Simplex Virus: Laboratory and Point-of-Care Techniques

Peuli Nath et al. Infect Dis Rep. .

Abstract

Herpes is a widespread viral infection caused by the herpes simplex virus (HSV) that has no permanent cure to date. There are two subtypes, HSV-1 and HSV-2, that are known to cause a variety of symptoms, ranging from acute to chronic. HSV is highly contagious and can be transmitted via any type of physical contact. Additionally, viral shedding can also happen from asymptomatic infections. Thus, early and accurate detection of HSV is needed to prevent the transmission of this infection. Herpes can be diagnosed in two ways, by either detecting the presence of the virus in lesions or the antibodies in the blood. Different detection techniques are available based on both laboratory and point of care (POC) devices. Laboratory techniques include different biochemical assays, microscopy, and nucleic acid amplification. In contrast, POC techniques include microfluidics-based tests that enable on-spot testing. Here, we aim to review the different diagnostic techniques, both laboratory-based and POC, their limits of detection, sensitivity, and specificity, as well as their advantages and disadvantages.

Keywords: detection; diagnostics; herpes simplex virus; imaging and microscopy; microfluidics; point-of-care devices.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
(A) Microscopic image showing large multinucleated giant cells (indicated by arrows) surrounded by multiple normal cells in an HSV-infected patient. The cells were stained with methylene blue, taken using an optical brightfield microscope [45]. (B) Images showing Vero/hSLAM cells coinfected by MeV and HSV-1 from different passages and a cell control (3rd, 6th, 10th, CC). As indicated in the 2nd and 3rd columns, the cells were subjected to immunostaining using antibodies against MeV M (green) and HSV-1 ICP0 (red) protein, and images were captured using laser scanning confocal microscopy at 40× magnification using a Leica TCS SP8 confocal microscope (Leica Microsystems; Wetzlar, Germany). The cell nuclei were stained with DAPI [68].
Figure 2
Figure 2
(A) Schematic representation of lensless holographic microscope. (B) Step-wise process showing attachment of the virus to the surface substrate. Firstly, the chip for specific capture of HSV-1 particles is prepared by coating a glass substrate with streptavidin and poly-ethylene-glycol. In the second step, HSV-1 particles in solution are conjugated with biotin-tagged antibodies and added onto the substrate; in the third step, HSV-1 particles captured on the substrate are then imaged by the computational holographic microscope for counting their density (counts/mm2) [36].
Figure 3
Figure 3
(A) General representation of steps of DNA amplification using polymerase chain reaction. (B) DNA amplification using the TaqMan chemistry mechanism.
Figure 4
Figure 4
Illustration of enzyme-linked immunosorbent assay used for detection of HSV-2 IgG/IgM from patient samples. The antigen specific to IgG/IgM was coated on a microtiter plate followed by the addition of serum samples with the target antibody (IgG/IgM). After the formation of the Ag–Ab immunocomplex is detected, the anti-antibody specific to IgG/IgM linked with the enzyme is added, which subsequently binds to the target antibody. After the addition of a specific substrate, a colored compound is formed. This color change is proportional to the antibody titer present in the sample and is read by a microplate reader.
Figure 5
Figure 5
(A) Schematic representation of the microfluidic-based lateral flow immunoassay for the detection of antibodies present in patients using luminescent nanoparticles (PLNPs). A diluted sample was added to the sample pad, which was then mixed with PLNPs functionalized with goat anti-human IgGs to form human IgG–PLNP complexes on the LFA strip. The anti-HSV gG2 human IgG PLNP complexes migrated up the membrane and were captured by recombinant HSV gG2 immobilized at the test line. The uncaptured nonspecific human IgG-PLNP complexes were captured by goat anti-human IgGs immobilized at the control line. (B) Images of the serum/plasma panel tested with the HSV-2 PLNP LFA strips, captured using an iPhone 7 smartphone with a preinstalled LFA iPhone app showing phosphor emission. (Panel no 16* was re-tested at a higher dilution due to weaker control line) [167].

Similar articles

Cited by

References

    1. Johnston C., Corey L. Current Concepts for Genital Herpes Simplex Virus Infection: Diagnostics and Pathogenesis of Genital Tract Shedding. Clin. Microbiol. Rev. 2016;29:149–161. doi: 10.1128/CMR.00043-15. - DOI - PMC - PubMed
    1. Whitley R., Baines J. Clinical management of herpes simplex virus infections: Past, present, and future. F1000Research. 2018;7 doi: 10.12688/f1000research.16157.1. F1000 Faculty Rev-1726. - DOI - PMC - PubMed
    1. Crimi S., Fiorillo L., Bianchi A., D’Amico C., Amoroso G., Gorassini F., Mastroieni R., Marino S., Scoglio C., Catalano F., et al. Herpes Virus, Oral Clinical Signs and QoL: Systematic Review of Recent Data. Viruses. 2019;11:463. doi: 10.3390/v11050463. - DOI - PMC - PubMed
    1. Xu X., Zhang Y., Li Q. Characteristics of herpes simplex virus infection and pathogenesis suggest a strategy for vaccine development. Rev. Med. Virol. 2019;29:e2054. doi: 10.1002/rmv.2054. - DOI - PMC - PubMed
    1. Arvin A., Campadelli-Fiume G., Mocarski E., Moore P.S., Roizman B., Whitley R., Yamanishi K. Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis. Cambridge University Press; Cambridge, UK: 2007. - PubMed

LinkOut - more resources

-