Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jan 22;11(8):4593-4597.
doi: 10.1039/d1ra00063b. eCollection 2021 Jan 21.

Transition-metal-free decarboxylative thiolation of stable aliphatic carboxylates

Affiliations

Transition-metal-free decarboxylative thiolation of stable aliphatic carboxylates

Wei-Long Xing et al. RSC Adv. .

Abstract

A transition-metal-free decarboxylative thiolation protocol is reported in which primary, secondary, tertiary (hetero)aryl acetates and α-CN substituted acetates undergo the decarboxylative thiolation smoothly, to deliver a variety of functionalized aryl alkyl sulfides in moderate to excellent yields. Aryl diselenides are also amenable substrates for construction of C-Se bonds under the simple and mild reaction conditions. Moreover, the protocol is successfully applied to the late-stage modification of pharmaceutical carboxylates with satisfactory chemoselectivity and functional-group compatibility.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. Thioether-containing pharmaceutical agents.
Scheme 1
Scheme 1. The initially hypothesized mechanism and the focus of this work.
Fig. 2
Fig. 2. The Gibbs free energies of the feasible mechanism.

Similar articles

References

    1. Christophersen C. Anthoni U. Sulfur Rep. 1986;4:365. doi: 10.1080/01961778608082487. - DOI
    2. Feng M. Tang B. Liang S.-H. Curr. Top. Med. Chem. 2016;16:1200. doi: 10.2174/1568026615666150915111741. - DOI - PMC - PubMed
    3. Scott K. A. Njardarson J. T. Top. Curr. Chem. 2018;5:376. - PubMed
    4. Boyd D. A. Angew. Chem., Int. Ed. 2016;55:15486. doi: 10.1002/anie.201604615. - DOI - PubMed
    1. Liu B. Lim C.-H. Miyake G. M. J. Am. Chem. Soc. 2017;139:13616. doi: 10.1021/jacs.7b07390. - DOI - PMC - PubMed
    2. Liu D. Ma H.-X. Fang P. Mei T.-S. Angew. Chem., Int. Ed. 2019;58:5033. doi: 10.1002/anie.201900956. - DOI - PubMed
    3. Sandfort F. Knecht T. Pinkert T. Daniliuc C. G. Glorius F. J. Am. Chem. Soc. 2020;142:6913. doi: 10.1021/jacs.0c01630. - DOI - PubMed
    1. Kondo T. Mitsudo T. Chem. Rev. 2000;100:3205. doi: 10.1021/cr9902749. - DOI - PubMed
    2. Ley S. V. Thomas A. W. Angew. Chem., Int. Ed. 2003;42:5400. doi: 10.1002/anie.200300594. - DOI - PubMed
    3. Oderinde M. S. Frenette M. Robbins D. W. Aquila B. Johannes J. W. J. Am. Chem. Soc. 2016;138:1760. doi: 10.1021/jacs.5b11244. - DOI - PubMed
    4. Lou J. Wang Q.-N. Wu P. Wang H.-M. Zhou Y.-G. Yu Z.-K. Chem. Soc. Rev. 2020;49:4307. doi: 10.1039/C9CS00837C. - DOI - PubMed
    1. Baranano D. Hartwig J. F. J. Am. Chem. Soc. 1995;117:2937. doi: 10.1021/ja00115a033. - DOI
    2. Mann G. Baranano D. Hartwig J. F. Rheingold A. L. Guzei I. A. J. Am. Chem. Soc. 1998;120:9205. doi: 10.1021/ja981428p. - DOI
    3. Fernández-Rodríguez M. A. Shen Q.-L. Hartwig J. F. J. Am. Chem. Soc. 2006;128:2180. doi: 10.1021/ja0580340. - DOI - PubMed
    4. Alvaro E. Hartwig J. F. J. Am. Chem. Soc. 2009;131:7858. doi: 10.1021/ja901793w. - DOI - PMC - PubMed
    1. Uyeda C. Tan Y.-C. Fu G. C. Peters J. C. J. Am. Chem. Soc. 2013;135:9548. doi: 10.1021/ja404050f. - DOI - PubMed
    2. Johnson M. W. Hannoun K. I. Tan Y.-C. Fu G. C. Peters J. C. Chem. Sci. 2016;7:4091. doi: 10.1039/C5SC04709A. - DOI - PMC - PubMed
-