Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2023 Feb;29(2):450-457.
doi: 10.1038/s41591-023-02210-0. Epub 2023 Feb 9.

Oncolytic T-VEC virotherapy plus neoadjuvant chemotherapy in nonmetastatic triple-negative breast cancer: a phase 2 trial

Affiliations
Clinical Trial

Oncolytic T-VEC virotherapy plus neoadjuvant chemotherapy in nonmetastatic triple-negative breast cancer: a phase 2 trial

Hatem Soliman et al. Nat Med. 2023 Feb.

Erratum in

Abstract

Talimogene laherparepvec (T-VEC) is an oncolytic virus hypothesized to enhance triple-negative breast cancer (TNBC) responses to neoadjuvant chemotherapy (NAC). This article describes the phase 2 trial of T-VEC plus NAC (ClinicalTrials.gov ID: NCT02779855 ). Patients with stage 2-3 TNBC received five intratumoral T-VEC injections with paclitaxel followed by doxorubicin and cyclophosphamide and surgery to assess residual cancer burden index (RCB). The primary end point was RCB0 rate. Secondary end points were RCB0-1 rate, recurrence rate, toxicity and immune correlates. Thirty-seven patients were evaluated. Common T-VEC toxicities were fevers, chills, headache, fatigue and injection site pain. NAC toxicities were as expected. Four thromboembolic events occurred. The primary end point was met with an estimated RCB0 rate = 45.9% and RCB0-1 descriptive rate = 65%. The 2-year disease-free rate is equal to 89% with no recurrences in RCB0-1 patients. Immune activation during treatment correlated with response. T-VEC plus NAC in TNBC may increase RCB0-1 rates. These results support continued investigation of T-VEC plus NAC for TNBC.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Bianchini, G., De Angelis, C., Licata, L. & Gianni, L. Treatment landscape of triple-negative breast cancer—expanded options, evolving needs. Nat. Rev. Clin. Oncol. 19, 91–113 (2022). - DOI - PubMed
    1. Zhu, W. et al. Age-related disparity in immediate prognosis of patients with triple-negative breast cancer: a population-based study from SEER cancer registries. PLoS ONE 10, e0128345 (2015). - DOI - PubMed - PMC
    1. Miyashita, M. et al. Tumor-infiltrating CD8+ and FOXP3+ lymphocytes in triple-negative breast cancer: its correlation with pathological complete response to neoadjuvant chemotherapy. Breast Cancer Res. Treat. 148, 525–534 (2014). - DOI - PubMed
    1. Heise, C. et al. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat. Med. 3, 639–645 (1997). - DOI - PubMed
    1. Soliman, H. et al. A phase I trial of talimogene laherparepvec in combination with neoadjuvant chemotherapy for the treatment of nonmetastatic triple-negative breast cancer. Clin. Cancer Res. 27, 1012–1018 (2021). - DOI - PubMed

Publication types

MeSH terms

Substances

Associated data

-