Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 May 26;9(21):eade7280.
doi: 10.1126/sciadv.ade7280. Epub 2023 May 26.

Nitric oxide synthase and reduced arterial tone contribute to arteriovenous malformation

Affiliations

Nitric oxide synthase and reduced arterial tone contribute to arteriovenous malformation

Lawrence Huang et al. Sci Adv. .

Abstract

Mechanisms underlying arteriovenous malformations (AVMs) are poorly understood. Using mice with endothelial cell (EC) expression of constitutively active Notch4 (Notch4*EC), we show decreased arteriolar tone in vivo during brain AVM initiation. Reduced vascular tone is a primary effect of Notch4*EC, as isolated pial arteries from asymptomatic mice exhibited reduced pressure-induced arterial tone ex vivo. The nitric oxide (NO) synthase (NOS) inhibitor NG-nitro-l-arginine (L-NNA) corrected vascular tone defects in both assays. L-NNA treatment or endothelial NOS (eNOS) gene deletion, either globally or specifically in ECs, attenuated AVM initiation, assessed by decreased AVM diameter and delayed time to moribund. Administering nitroxide antioxidant 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl also attenuated AVM initiation. Increased NOS-dependent production of hydrogen peroxide, but not NO, superoxide, or peroxynitrite was detected in isolated Notch4*EC brain vessels during AVM initiation. Our data suggest that eNOS is involved in Notch4*EC-mediated AVM formation by up-regulating hydrogen peroxide and reducing vascular tone, thereby permitting AVM initiation and progression.

PubMed Disclaimer

Figures

Fig. 1.
Fig. 1.. Impaired in vivo cerebral vascular tone in mice expressing Notch4* in ECs.
(A) Representative images of middle cerebral and anterior cerebral arteries and branches in live postnatal day 16 (P16) Tie2-tTA and Tie2-tTA;TRE-Notch4* mice visualized through an open cranial window. Scale bars, 150 μm. aCSF, artificial cerebrospinal fluid. (B) Arterial and arteriolar tone in the absence (−) and presence (+) of NG-nitro-l-arginine (L-NNA) treatment (30 mg/kg) (percentage change from maximum passive diameter). (In the absence of L-NNA, artery: Tie2-tTA, n = 24 mice; Tie2-tTA;TRE-Notch4*, n = 27 mice; P = 0.1385, t test; arteriole: Tie2-tTA, n = 27 mice; Tie2-tTA;TRE-Notch4*, n = 29 mice; P = 0.001, t test.) (In the presence of L-NNA, artery: Tie2-tTA, n = 10 mice; Tie2-tTA;TRE-Notch4*, n = 10 mice; P = 0.0936, t test; arteriole: Tie2-tTA, n = 10 mice; Tie2-tTA;TRE-Notch4*, n = 10 mice; P = 0.913, t test.) (C) Arteriolar tone by edge detection from line profiles (Tie2-tTA, n = 17 mice; Tie2-tTA;TRE-Notch4*, n = 19 mice; P = 0.02, t test).
Fig. 2.
Fig. 2.. Impaired ex vivo cerebral vascular tone in mice expressing Notch4* in ECs.
(A) Representative diameter recordings from pressurized Tie2-tTA and Tie2-tTA;TRE-Notch4* cerebral arteries over a range of intravascular pressures. Solid and dashed lines indicate active and passive diameters, respectively. (B) Arterial tone (percentage change from maximum passive diameter) measured in isolated cerebral arteries over a range of intravascular pressures. (n = 8 arteries from seven mice per group; Tie2-tTA versus Tie2-tTA;TRE-Notch4* at 20 mmHg, P = 0.4783; 40 mmHg, P = 0.0667; 60 mmHg, P = 0.0121; 80 and 100 mmHg, P < 0.0001, t test). (C) Representative diameter recordings from pressurized (60 mmHg) cerebral arteries in the absence and presence of 50 μM L-NNA. The maximum passive diameter was recorded at the end of the experiment in Ca2+-free perfusate containing nifedipine (nifed; 1 μM) and forskolin (fsk; 0.5 μμ). (D) L-NNA–induced constriction (percentage change in diameter normalized to maximum passive diameter for vessels shown in (D). (n = 5 arteries from four mice per group; P = 0.0431, t test.) (E) Arterial tone at 60 mmHg of intravascular pressure in the absence (−) and presence (+) of 50 μM L-NNA (n = 5 arteries from four mice per group; Tie2-tTA versus Tie2-tTA;TRE-Notch4* in the absence of L-NNA, P = 0.0085; in the presence of L-NNA, P = 0.3763, t test). Error bars, SEM.
Fig. 3.
Fig. 3.. L-NNA decreased AVM diameter in brains of mice expressing Notch4* in ECs.
(A) Lectin-perfused vasculature on P24 surface cerebral cortex of Tie2-tTA and Tie2-tTA;TRE-Notch4* mice treated with saline or L-NNA (a, artery; v, vein; dashed lines, example AV connections; arrowheads, example points of measurement for AV connection diameter; scale bars, 100 μm). (B) Arteriovenous (AV) connection diameter (Tie2-tTA + saline, n = 7 mice; Tie2-tTA + L-NNA, n = 9 mice; Tie2-tTA;TRE-Notch4* + saline, n = 6 mice; Tie2-tTA;TRE-Notch4* + L-NNA, n = 6 mice; P = 0.0002, t test). (C) Fraction of AV connections with a diameter of ≥30 μm over total AV connections quantified [same n numbers as in (B); P < 0.0001, t test]. (D) Lectin-perfused vasculature on P12 surface cerebral cortex of Tie2-tTA and Tie2-tTA;TRE-Notch4* mice treated with saline or L-NNA (dashed lines, example AV connections; arrowheads, example points of measurement for AV connection diameter; scale bars, 100 μm). (E) AV connection diameter [Tie2-tTA + saline, n = 6 mice; Tie2-tTA + L-NNA, n = 7 mice; Tie2-tTA;TRE-Notch4* + saline, n = 4 mice; Tie2-tTA;TRE-Notch4* + L-NNA, n = 5 mice; Tie2-tTA;TRE-Notch4* + L-NNA versus Tie2-tTA;TRE-Notch4* + saline, Padj < 0.0001; Tie2-tTA;TRE-Notch4* + L-NNA versus Tie2-tTA + saline, Padj = 0.2631; Tie2-tTA;TRE-Notch4* + L-NNA versus Tie2-tTA + L-NNA, Padj = 0.3582; Tukey’s multiple comparisons test following a two-way analysis of variance (ANOVA) to analyze the effects of Notch4*EC and L-NNA]. (F) Fraction of AV connections with a diameter of ≥12.5 μm over total AV connections quantified [same n numbers as in (E); Tie2-tTA;TRE-Notch4* + L-NNA versus Tie2-tTA;TRE-Notch4* + saline, Padj < 0.0001; Tie2-tTA;TRE-Notch4* + L-NNA versus Tie2-tTA + saline, Padj = 0.5605; Tie2-tTA;TRE-Notch4* + L-NNA versus Tie2-tTA + L-NNA, Padj = 0.5336; Tukey’s multiple comparisons test following a two-way ANOVA to analyze the effects of Notch4*EC and L-NNA]. Error bars, SEM.
Fig. 4.
Fig. 4.. L-NNA treatment delayed illness progression in mice expressing Notch4* in ECs.
(A) Kaplan-Meier analysis of Tie2-tTA;TRE-Notch4* mice treated with saline (n = 34 mice) or L-NNA (n = 18 mice), with monitoring starting on P12. Blue indicates median moribund age (P < 0.0001, log-rank/Mantel-Cox test). (B) Heart-to-body weight ratio at P24 (Tie2-tTA + saline, n = 3 mice; Tie2-tTA + L-NNA, n = 3 mice; Tie2-tTA;TRE-Notch4* + saline, n = 7 mice; Tie2-tTA;TRE-Notch4* + L-NNA, n = 4 mice; P = 0.002, t test.). Error bars, SEM.
Fig. 5.
Fig. 5.. eNOS deletion decreased AVM diameter in brains of mice expressing Notch4* in ECs.
(A) Vasculature on P24 surface cerebral cortex of Tie2-tTA and Tie2-tTA;TRE-Notch4* mice without (eNOS+/+) and with (eNOS−/−) endothelial nitric oxide synthase (eNOS) deletion. (B) AV connection diameter (Tie2-tTA;TRE-Notch4*;eNOS+/+, n = 9 mice; Tie2-tTA;TRE-Notch4*;eNOS−/−, n = 12 mice; P = 0.0114, t test). (C) Fraction of AV connections with a diameter of ≥30 μm over total AV connections quantified [same n numbers as in (B); P = 0.0044, t test]. For (B) and (C), n = 3 mice per group for Tie2-tTA;eNOS+/+ and Tie2-tTA;eNOS−/−. (D) Kaplan-Meier analysis of Tie2-tTA;TRE-Notch4* mice without (eNOS+/+) and with (eNOS−/−) eNOS deletion (Tie2-tTA;TRE-Notch4*;eNOS+/+, n = 17 mice; Tie2-tTA;TRE-Notch4*;eNOS−/−, n = 24 mice; P = 0.0024, log-rank/Mantel-Cox test). (E) Heart-to-body weight ratio at P24 (Tie2-tTA;TRE-Notch4*;eNOS+/+, n = 8 mice; Tie2-tTA;TRE-Notch4*;eNOS−/−, n = 10 mice; P = 0.0062, t test; Tie2-tTA;eNOS+/+, n = 4 mice; Tie2-tTA;eNOS−/−, n = 5 mice). (F) Vasculature on P24 surface cerebral cortex of Tie2-tTA and Tie2-tTA;TRE-Notch4* mice without and with endothelial-specific deletion of eNOS. (G) AV connection diameter [Tie2-tTA;TRE-Notch4*;eNOSf/f, n = 6 mice; Tie2-tTA;TRE-Notch4*;Cdh5(PAC)-CreERT2;eNOSf/f, n = 7 mice; P = 0.0004, t test; n = 6 mice per group for Tie2-tTA;eNOSf/f and Tie2-tTA;Cdh5(PAC)-CreERT2;eNOSf/f]. (H) Kaplan-Meier analysis of Tie2-tTA;TRE-Notch4* mice without and with endothelial-specific eNOS deletion [Tie2-tTA;TRE-Notch4*;eNOSf/f, n = 6 mice; Tie2-tTA;TRE-Notch4*;Cdh5(PAC)-CreERT2;eNOSf/f, n = 9 mice; P = 0.017, log-rank/Mantel-Cox test]. (I) Heart-to-body weight ratio at P24 [Tie2-tTA;TRE-Notch4*; Cdh5(PAC)-CreERT2;eNOSf/f, n = 6 mice; Tie2-tTA;TRE-Notch4*;eNOSf/f, n = 5 mice; P = 0.0245, t test; Tie2-tTA;eNOSf/f, n = 6 mice; Tie2-tTA; Cdh5(PAC)-CreERT2;eNOSf/f, n = 6 mice]. Dashed lines, example AV connections; arrowheads, example points of measurement for AV connection diameter; scale bars, 100 μm. For Kaplan-Meier analyses, monitoring started on P12, and blue indicates median moribund age. Error bars, SEM.
Fig. 6.
Fig. 6.. Endothelial Notch4* expression did not result in a significant change in cGMP production in aortae, DAF staining in cerebral vasculature, or nitrite/nitrate levels in isolated cerebral vessels.
(A) Acetylcholine (ACh)–stimulated cyclic guanosine monophosphate (cGMP) production in aorta (P12: Tie2-tTA, n = 8 mice; Tie2-tTA;TRE-Notch4*, n = 8 mice; P = 0.8248, t test; 8 weeks: Tie2-tTA, n = 7 mice; Tie2-tTA;TRE-Notch4*, n = 8 mice; P = 0.3754, t test). (B) 4-Amino-5-methylamino-2′,7′-difluorofluorescein (DAF-FM) staining and lectin-perfused vasculature on P12 surface cerebral cortex of Tie2-tTA and Tie2-tTA;TRE-Notch4*, with or without L-NNA treatment. Scale bars, 100 μm. (C) Quantification of L-NNA sensitive DAF-FM fluorescence intensity by arterial diameter (A.U., arbitrary units; Tie2-tTA, n = 6 mice; Tie2-tTA;TRE-Notch4*, n = 6 mice; > 60 μm, P = 0.389; 35 to 55 μm, P = 0.4138; <30 μm, P = 0.5951, t test.) (D) Nitrite/nitrate level in isolated brain blood vessels at P12 (Tie2-tTA, n = 8 mice; Tie2-tA;TRE-Notch4*, n = 9 mice; P = 0.7562, t test) and P16 (n = 6 for both groups; P = 0.3785, t test). Error bars, SEM.
Fig. 7.
Fig. 7.. Tempol treatment delayed illness progression and decreased brain AVM diameter in moribund mice expressing Notch4* in ECs.
(A) Kaplan-Meier analysis of Tie2-tTA;TRE-Notch4* mice treated with vehicle (n = 55 mice) or Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl; n = 26 mice), with monitoring starting on P12. Blue indicates median moribund age (P < 0.0001, log-rank/Mantel-Cox test). (B) Lectin-perfused vasculature on surface cerebral cortex of moribund Tie2-tTA;TRE-Notch4* mice and age-matched Tie2-tTA mice treated with vehicle or Tempol (dashed lines, example AV connections; arrowheads, example points of measurement for AV connection diameter; scale bars, 100 μm). (C) AV connection diameter (Tie2-tTA + vehicle, n = 6 mice; Tie2-tTA + Tempol, n = 7 mice; Tie2-tTA;TRE-Notch4* + vehicle, n = 10 mice; Tie2-tTA;TRE-Notch4* + Tempol, n = 10 mice; P = 0.0043, t test). (D) Fraction of AV connections with a diameter of ≥12.5 μm over total AV connections quantified [same n numbers as in (C); P = 0.0012, t test]. (E) Age at which Tie2-tTA;TRE-Notch4* mice were moribund. Error bars, SEM.
Fig. 8.
Fig. 8.. Increased hydroperoxide and NT but not peroxynitrite levels in isolated cerebral vessels of mice expressing Notch4* in ECs.
(A) Hydrogen peroxide product o-MitoPhOH in isolated brain blood vessels at P16 [Tie2-tTA + vehicle, n = 13 mice; Tie2-tTA + NG-nitro arginine-methyl ester (L-NAME), n = 10 mice; Tie2-tA;TRE-Notch4* + vehicle, n = 13 mice; Tie2-tA;TRE-Notch4* + L-NAME, n = 11 mice; Tie2-tTA + vehicle versus Tie2-tTA;TRE-Notch4* + vehicle, Padj = 0.0122; Tie2-tTA + vehicle versus Tie2-tTA + L-NAME, Padj = 0.3899; Tie2-tTA;TRE-Notch4* + vehicle versus Tie2-tTA;TRE-Notch4* + L-NAME, Padj = 0.0116; Tukey’s multiple comparisons test following a two-way ANOVA to analyze the effects of Notch4*EC and L-NAME]. (B) Peroxynitrite-specific product cyclo-o-MitoPh in isolated brain blood vessels at P16. Cyclo-o-MitoPh was below the detection limit for Tie2-tTA and Tie2-tTA;TRE-Notch4* blood vessels. Tie2-tTA blood vessels treated with SIN-1 served as a positive control for peroxynitrite. (C) Expression of 3-nitrotyrosine (3-NT) in brain blood vessels at P16. Scale bars, 100 μm. (D) Fluorescence intensity of 3-NT normalized to that of CD31 (Tie2-tTA, n = 6 mice; Tie2-tA;TRE-Notch4*, n = 8 mice; artery, P = 0.0305; vein, P = 0.0051; capillary, P = 0.0091, t test). Error bars, SEM.

Similar articles

References

    1. R. M. Friedlander, Arteriovenous malformations of the brain. N. Engl. J. Med. 356, 2704–2712 (2007). - PubMed
    1. M. T. Lawton, W. C. Rutledge, H. Kim, C. Stapf, K. J. Whitehead, D. Y. Li, T. Krings, K. terBrugge, D. Kondziolka, M. K. Morgan, K. Moon, R. F. Spetzler, Brain arteriovenous malformations. Nat. Rev. Dis. Primers. 1, 15008 (2015). - PubMed
    1. P. A. Murphy, G. Lu, S. Shiah, A. W. Bollen, R. A. Wang, Endothelial Notch signaling is upregulated in human brain arteriovenous malformations and a mouse model of the disease. Lab. Investig. 89, 971–982 (2009). - PMC - PubMed
    1. Q. ZhuGe, Z. Wu, L. Huang, B. Zhao, M. Zhong, W. Zheng, C. GouRong, X. Mao, L. Xie, X. Wang, K. Jin, Notch4 is activated in endothelial and smooth muscle cells in human brain arteriovenous malformations. J. Cell. Mol. Med. 17, 1458–1464 (2013). - PMC - PubMed
    1. Q. ZhuGe, M. Zhong, W. Zheng, G. Y. Yang, X. Mao, L. Xie, G. Chen, Y. Chen, M. T. Lawton, W. L. Young, D. A. Greenberg, K. Jin, Notch-1 signalling is activated in brain arteriovenous malformations in humans. Brain 132, 3231–3241 (2009). - PMC - PubMed
-