Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Oct;38(5):557-567.
doi: 10.3803/EnM.2023.1672. Epub 2023 Sep 1.

Protective Effects of Melatonin in High-Fat Diet-Induced Hepatic Steatosis via Decreased Intestinal Lipid Absorption and Hepatic Cholesterol Synthesis

Affiliations

Protective Effects of Melatonin in High-Fat Diet-Induced Hepatic Steatosis via Decreased Intestinal Lipid Absorption and Hepatic Cholesterol Synthesis

Hyungjune Ku et al. Endocrinol Metab (Seoul). 2023 Oct.

Abstract

Backgruound: The preventative effect of melatonin on the development of obesity and the progression of fatty liver under a high-fat diet (HFD) has been well elucidated through previous studies. We investigated the mechanism behind this effect regarding cholesterol biosynthesis and regulation of cholesterol levels.

Methods: Mice were divided into three groups: normal chow diet (NCD); HFD; and HFD and melatonin administration group (HFD+M). We assessed the serum lipid profile, mRNA expression levels of proteins involved in cholesterol synthesis and reabsorption in the liver and nutrient transporters in the intestines, and cytokine levels. Additionally, an in vitro experiment using HepG2 cells was performed.

Results: Expression of hepatic sterol regulatory element-binding protein 2 (SREBP-2), 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), and low-density lipoprotein receptor (LDLR) demonstrated that melatonin administration significantly reduces hepatic cholesterol synthesis in mice fed an HFD. Expression of intestinal sodium-glucose transporter 1 (SGLT1), glucose transporter 2 (GLUT2), GLUT5, and Niemann-pick C1-like 1 (NPC1L1) demonstrated that melatonin administration significantly reduces intestinal carbohydrate and lipid absorption in mice fed an HFD. There were no differences in local and circulatory inflammatory cytokine levels among the NCD, HFD, and HFD+M group. HepG2 cells stimulated with palmitate showed reduced levels of SREBP, LDLR, and HMGCR indicating these results are due to the direct mechanistic effect of melatonin on hepatocytes.

Conclusion: Collectively, these data indicate the mechanism behind the protective effects of melatonin from weight gain and liver steatosis under HFD is through a reduction in intestinal caloric absorption and hepatic cholesterol synthesis highlighting its potential in the treatment of obesity and fatty liver disease.

Keywords: Fatty liver; Melatonin; NPC1L1 protein; Obesity.

PubMed Disclaimer

Conflict of interest statement

CONFLICTS OF INTEREST

No potential conflict of interest relevant to this article was reported.

Figures

Fig. 1.
Fig. 1.
Melatonin protects against high-fat diet (HFD)-induced obesity and fat deposit in the liver. (A) body weight changes through 17 weeks, (B) gross findings of visceral fat accumulation, (C) comparison of liver weights among groups, (D) histological lipid accumulation of liver with H&E (×100) and Oil red O (×200) staining at 17 weeks. HFD+M, high-fat diet with melatonin. aP<0.05 as compared to the control; bP=0.14 as compared to the HFD.
Fig. 2.
Fig. 2.
Melatonin decreased high-fat diet (HFD)-induced low-density lipoprotein cholesterol elevation. Serum lipid profile at 6 weeks (A) total cholesterol, (B) triglyceride, (C) apolipoprotein A1 (ApoA1) lipoprotein, (D) apolipoprotein B (ApoB) lipoprotein. HFD+M, high-fat diet with melatonin. aP<0.05.
Fig. 3.
Fig. 3.
Melatonin protect excess calories absorption via suppression of carbohydrate and lipid transporters’ expression in the intestine (A) sodium-glucose transporter 1 (SGLT1) which is brush border transporter of carbohydrate, (B) glucose transporter 5 (GLUT5) which is brush border transporter of carbohydrate (C) glucose transporter 2 (GLUT2) which is basolateral membrane transporter of carbohydrate, (D) Niemann-pick C1-like 1 (NPC1L1) which is intestinal and hepatic transporter of cholesterol. HFD, high-fat diet; HFD+M, high-fat diet with melatonin. aP<0.05.
Fig. 4.
Fig. 4.
mRNA expression levels of genes involved in cholesterol metabolism in the liver. (A) sterol regulatory element-binding protein 2 (SREBP-2), (B) 3-hydroxy-3-methylglutaryl coenzyme A (HMGCoA) reductase (C) low-density lipoprotein receptor (LDLR). HFD, high-fat diet; HFD+M, high-fat diet with melatonin. aP<0.05.
Fig. 5.
Fig. 5.
No differences among groups in circulatory and local inflammatory cytokines. (A) Serum interleukin 10 (IL-10), (B) serum tumor necrosis factor α (TNF-α), (C) serum IL-6, (D) liver IL-10, (E) liver TNF-α, and (F) liver IL-6. HFD, high-fat diet; HFD+M, high-fat diet with melatonin. aP<0.05.
Fig. 6.
Fig. 6.
Melatonin directly inhibits palmitate-induced cholesterol synthesis in hepatocyte. (A) Hepatocytes were stimulated with palmitate for 6 hours in the absence or presence of melatonin. Levels of sterol regulatory element-binding protein (SREBP), low-density lipoprotein receptor (LDLR), 3-hydroxy-3-methylglutaryl coenzyme A (HMGCoA) were analyzed by reverse transcriptase-polymerase chain reaction. (B) Levels of LDLR, HMGCoA were analyzed by Western blot. β-Actin were used as internal loading controls. (C) Immunofluorescent images were obtained with palmitate, melatonin, and both and were compared to the control (×800). FITC, fluorescein. aP<0.01.
None

Similar articles

References

    1. World Health Organization . Geneva: WHO; 2021. Obesity and overweight [Internet] [cited 2023 Jul 31]. Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.
    1. NCD Risk Factor Collaboration (NCD-RisC) Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet. 2017;390:2627–42. - PMC - PubMed
    1. Ha KH, Kim DJ. Epidemiology of childhood obesity in Korea. Endocrinol Metab (Seoul) 2016;31:510–8. - PMC - PubMed
    1. Rhie S, Lee S, Chae KY. Sleep patterns and school performance of Korean adolescents assessed using a Korean version of the pediatric daytime sleepiness scale. Korean J Pediatr. 2011;54:29–35. - PMC - PubMed
    1. Cappuccio FP, D’Elia L, Strazzullo P, Miller MA. Sleep duration and all-cause mortality: a systematic review and meta-analysis of prospective studies. Sleep. 2010;33:585–92. - PMC - PubMed

Publication types

-