Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Feb 6;15(11):4114-4120.
doi: 10.1039/d4sc00120f. eCollection 2024 Mar 13.

Tunable C-H functionalization and dearomatization enabled by an organic photocatalyst

Affiliations

Tunable C-H functionalization and dearomatization enabled by an organic photocatalyst

Bohang An et al. Chem Sci. .

Abstract

C-H functionalization and dearomatization constitute fundamental transformations of aromatic compounds, which find wide applications in various research areas. However, achieving both transformations from the same substrates with a single catalyst by operating a distinct mechanism remains challenging. Here, we report a photocatalytic strategy to modulate the reaction pathways that can be directed toward either C-H functionalization or dearomatization under redox-neutral or net-reductive conditions, respectively. Two sets of indoles and indolines bearing tertiary alcohols are divergently furnished with good yields and high selectivity. The key to success is the introduction of isoazatruxene ITN-2 as a novel photocatalyst (PC), which outperforms the commonly used PCs. The ready synthesis and high modulability of isoazatruxene type PCs indicate their great application potential.

PubMed Disclaimer

Conflict of interest statement

A patent has been filed on the use of isoazatruxenes and their derivatives in photocatalysis.

Figures

Scheme 1
Scheme 1. Tunable C–H functionalization and dearomatization.
Scheme 2
Scheme 2. Performance of various photocatalysts in C–H functionalization and characterization of ITNs.
Scheme 3
Scheme 3. Substrate scope for C–H functionalization.a,b aReaction conditions: a solution of ITN-2 (5.2 mg, 5.0 mol%) and 1 (0.2 mmol, 1.0 equiv.) in toluene (2.0 mL, 0.1 M) was irradiated by a 427 nm Kessil lamp (40 W) at room temperature under a nitrogen atmosphere for 4–36 h. bIsolated yield.
Scheme 4
Scheme 4. Substrate scope for dearomatization.a,b aReaction conditions: a solution of ITN-2 (5.2 mg, 5.0 mol%), 1 (0.2 mmol, 1.0 equiv.), HEH (0.3 mmol, 1.5 equiv.), and DMAP (2.4 mg, 10.0 mol%) in CH2Cl2 (2.0 mL, 0.1 M) was irradiated by blue LEDs (30 W) at room temperature under a nitrogen atmosphere for 12–48 h. bIsolated yield. Ratios of diastereoisomers were determined by crude 1H NMR analysis.
Scheme 5
Scheme 5. Gram-scale reaction.
Scheme 6
Scheme 6. Proposed mechanism.

Similar articles

References

    1. For selected reviews, see:

    2. Murakami K. Yamada S. Kaneda T. Itami K. Chem. Rev. 2017;117:9302–9332. doi: 10.1021/acs.chemrev.7b00021. - DOI - PubMed
    3. Festa A. A. Voskressensky L. G. Van der Eycken E. V. Chem. Soc. Rev. 2019;48:4401–4423. doi: 10.1039/C8CS00790J. - DOI - PubMed
    4. Evano G. Theunissen C. Angew. Chem., Int. Ed. 2019;58:7558–7598. doi: 10.1002/anie.201806631. - DOI - PubMed
    5. Proctor R. S. J. Phipps R. J. Angew. Chem., Int. Ed. 2019;58:13666–13699. doi: 10.1002/anie.201900977. - DOI - PubMed
    6. Kumar P. Nagtilak P. J. Kapur M. New J. Chem. 2021;45:13692–13746. doi: 10.1039/D1NJ01696B. - DOI
    7. Holmberg-Douglas N. Nicewicz D. A. Chem. Rev. 2022;122:1925–2016. doi: 10.1021/acs.chemrev.1c00311. - DOI - PMC - PubMed
    8. Brunen S. Mitschke B. Leutzsch M. List B. J. Am. Chem. Soc. 2023;145:15708–15713. doi: 10.1021/jacs.3c05148. - DOI - PMC - PubMed
    1. For selected reviews, see:

    2. Rabideau P. W. Marcinow Z. Org. React. 1992;42:1–334.
    3. Moriarty R. M. Prakash O. M. Org. React. 2001;57:327–415.
    4. Roche S. P. Porco Jr J. A. Angew. Chem., Int. Ed. 2011;50:4068–4093. doi: 10.1002/anie.201006017. - DOI - PMC - PubMed
    5. Zhuo C.-X. Zhang W. You S.-L. Angew. Chem., Int. Ed. 2012;51:12662–12686. doi: 10.1002/anie.201204822. - DOI - PubMed
    6. Repka L. M. Reisman S. E. J. Org. Chem. 2013;78:12314–12320. doi: 10.1021/jo4017953. - DOI - PMC - PubMed
    7. Roche S. P. Tendoung J.-J. Y. Tréguier B. Tetrahedron. 2015;71:3549–3591. doi: 10.1016/j.tet.2014.06.054. - DOI
    8. James M. J. O'Brien P. Taylor R. J. K. Unsworth W. P. Chem.–Eur. J. 2016;22:2856–2881. doi: 10.1002/chem.201503835. - DOI - PubMed
    9. Remy R. Bochet C. G. Chem. Rev. 2016;116:9816–9849. doi: 10.1021/acs.chemrev.6b00005. - DOI - PubMed
    10. Okumura M. Sarlah D. Synlett. 2018;29:845–855. doi: 10.1055/s-0036-1591940. - DOI
    11. Bariwal J. Voskressensky L. G. Van der Eycken E. V. Chem. Soc. Rev. 2018;47:3831–3848. doi: 10.1039/C7CS00508C. - DOI - PubMed
    12. Wertjes W. C. Southgate E. H. Sarlah D. Chem. Soc. Rev. 2018;47:7996–8017. doi: 10.1039/C8CS00389K. - DOI - PubMed
    13. Huang G. Yin B. Adv. Synth. Catal. 2019;361:405–425. doi: 10.1002/adsc.201800789. - DOI
    14. Sheng F.-T. Wang J.-Y. Tan W. Zhang Y.-C. Shi F. Org. Chem. Front. 2020;7:3967–3998. doi: 10.1039/D0QO01124J. - DOI
    15. Okumura M. Sarlah D. Eur. J. Org Chem. 2020;2020:1259–1273. doi: 10.1002/ejoc.201901229. - DOI - PMC - PubMed
    16. Cheng Y.-Z. Feng Z. Zhang X. You S.-L. Chem. Soc. Rev. 2022;51:2145–2170. doi: 10.1039/C9CS00311H. - DOI - PubMed
    1. For selected examples, see:

    2. Taheri A. Lai B. Cheng C. Gu Y. Green Chem. 2015;17:812–816. doi: 10.1039/C4GC01299B. - DOI
    3. Pitre S. P. Scaiano J. C. Yoon T. P. ACS Catal. 2017;7:6440–6444. doi: 10.1021/acscatal.7b02223. - DOI - PMC - PubMed
    4. Wu K. Du Y. Wang T. Org. Lett. 2017;19:5669–5672. doi: 10.1021/acs.orglett.7b02837. - DOI - PubMed
    5. Alpers D. Gallhof M. Witt J. Hoffmann F. Brasholz M. Angew. Chem., Int. Ed. 2017;56:1402–1406. doi: 10.1002/anie.201610974. - DOI - PubMed
    6. Chen D. Xu L. Long T. Zhu S. Yang J. Chu L. Chem. Sci. 2018;9:9012–9017. doi: 10.1039/C8SC03493A. - DOI - PMC - PubMed
    7. Gentry E. C. Rono L. J. Hale M. E. Matsuura R. Knowles R. R. J. Am. Chem. Soc. 2018;140:3394–3402. doi: 10.1021/jacs.7b13616. - DOI - PMC - PubMed
    8. Strieth-Kalthoff F. Henkel C. Teders M. Kahnt A. Knolle W. Gómez-Suárez A. Dirian K. Alex W. Bergander K. Daniliuc C. G. Abel B. Guldi D. M. Glorius F. Chem. 2019;5:2183–2194. doi: 10.1016/j.chempr.2019.06.004. - DOI
    9. Yang J. Ji D.-W. Hu Y.-C. Min X.-T. Zhou X. Chen Q.-A. Chem. Sci. 2019;10:9560–9564. doi: 10.1039/C9SC03747K. - DOI - PMC - PubMed
    10. Cheng Y.-Z. Zhao Q.-R. Zhang X. You S.-L. Angew. Chem., Int. Ed. 2019;58:18069–18074. doi: 10.1002/anie.201911144. - DOI - PubMed
    11. Zhu M. Zheng C. Zhang X. You S.-L. J. Am. Chem. Soc. 2019;141:2636–2644. doi: 10.1021/jacs.8b12965. - DOI - PubMed
    12. Zhu M. Huang X.-L. Xu H. Zhang X. Zheng C. You S.-L. CCS Chem. 2020;3:652–664. doi: 10.31635/ccschem.020.202000254. - DOI
    13. Zhou W.-J. Wang Z.-H. Liao L.-L. Jiang Y.-X. Cao K.-G. Ju T. Li Y. Cao G.-M. Yu D.-G. Nat. Commun. 2020;11:3263. doi: 10.1038/s41467-020-17085-9. - DOI - PMC - PubMed
    14. Li H. Guo L. Feng X. Huo L. Zhu S. Chu L. Chem. Sci. 2020;11:4904–4910. doi: 10.1039/D0SC01471K. - DOI - PMC - PubMed
    15. Ma J. Schäfers F. Daniliuc C. Bergander K. Strassert C. A. Glorius F. Angew. Chem., Int. Ed. 2020;59:9639–9645. doi: 10.1002/anie.202001200. - DOI - PubMed
    16. Oderinde M. S. Mao E. Ramirez A. Pawluczyk J. Jorge C. Cornelius L. A. M. Kempson J. Vetrichelvan M. Pitchai M. Gupta A. Gupta A. K. Meanwell N. A. Mathur A. Dhar T. G. M. J. Am. Chem. Soc. 2020;142:3094–3103. doi: 10.1021/jacs.9b12129. - DOI - PubMed
    17. Sun K. Shi A. Liu Y. Chen X. Xiang P. Wang X. Qu L. Yu B. Chem. Sci. 2022;13:5659–5666. doi: 10.1039/D2SC01241C. - DOI - PMC - PubMed
    18. Georgiou E. Spinnato D. Chen K. Melchiorre P. Muñiz K. Chem. Sci. 2022;13:8060–8064. doi: 10.1039/D2SC02698H. - DOI - PMC - PubMed
    19. Chang X. Zhang F. Zhu S. Yang Z. Feng X. Liu Y. Nat. Commun. 2023;14:3876. doi: 10.1038/s41467-023-39633-9. - DOI - PMC - PubMed
    20. Lv X. Qi Y.-N. Wang J. Zhao X. Jiang Z. Org. Lett. 2023;25:3114–3119. doi: 10.1021/acs.orglett.3c00966. - DOI - PubMed
    21. Song T.-T. Mei Y.-K. Liu Y. Wang X.-Y. Guo S.-Y. Ji D.-W. Wan B. Yuan W. Chen Q.-A. Angew. Chem., Int. Ed. 2023:e202314304. - PubMed
    22. Qin J. Zhang Z. Lu Y. Zhu S. Chu L. Chem. Sci. 2023;14:12143–12151. doi: 10.1039/D3SC04645A. - DOI - PMC - PubMed
    1. For selected examples, see:

    2. Tan G. You Q. Lan J. You J. Angew. Chem., Int. Ed. 2018;57:6309–6313. doi: 10.1002/anie.201802539. - DOI - PubMed
    3. Dong Y. Schuppe A. W. Mai B. K. Liu P. Buchwald S. L. J. Am. Chem. Soc. 2022;144:5985–5995. doi: 10.1021/jacs.2c00734. - DOI - PMC - PubMed
    4. Li X. Hu L. Ma S. Yu H. Lu G. Xu T. ACS Catal. 2023;13:4873–4881. doi: 10.1021/acscatal.3c00063. - DOI
    1. For selected reviews, see:

    2. Yao Y. Alami M. Hamze A. Provot O. Org. Biomol. Chem. 2021;19:3509–3526. doi: 10.1039/D1OB00153A. - DOI - PubMed
    3. Umer S. M. Solangi M. Khan K. M. Saleem R. S. Z. Molecules. 2022;27:7586. doi: 10.3390/molecules27217586. - DOI - PMC - PubMed
    4. Zlotos D. P. Mandour Y. M. Jensen A. A. Nat. Prod. Rep. 2022;39:1910–1937. doi: 10.1039/D1NP00079A. - DOI - PubMed
    5. ; for selected examples, see:

    6. Woodward R. B. Cava M. P. Ollis W. D. Hunger A. Daeniker H. U. Schenker K. Tetrahedron. 1963;19:247–288. doi: 10.1016/S0040-4020(01)98529-1. - DOI
    7. Randriambola L. Quirion J.-C. Kan-Fan C. Husson H.-P. Tetrahedron Lett. 1987;28:2123–2126. doi: 10.1016/S0040-4039(00)96059-3. - DOI
    8. Stephens P. J. Pan J.-J. Devlin F. J. Urbanová M. Hájíček J. J. Org. Chem. 2007;72:2508–2524. doi: 10.1021/jo062567p. - DOI - PubMed
    9. Zhang X. Anderson J. C. Angew. Chem., Int. Ed. 2019;58:18040–18045. doi: 10.1002/anie.201910593. - DOI - PubMed
    10. Al-Rashed S. Baker A. Ahmad S. S. Syed A. Bahkali A. H. Elgorban A. M. Khan M. S. Bioorg. Chem. 2021;107:104626. doi: 10.1016/j.bioorg.2021.104626. - DOI - PubMed
-