Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Mar 22.
doi: 10.1038/s41587-024-02174-7. Online ahead of print.

Branched chemically modified poly(A) tails enhance the translation capacity of mRNA

Affiliations

Branched chemically modified poly(A) tails enhance the translation capacity of mRNA

Hongyu Chen et al. Nat Biotechnol. .

Abstract

Although messenger RNA (mRNA) has proved effective as a vaccine, its potential as a general therapeutic modality is limited by its instability and low translation capacity. To increase the duration and level of protein expression from mRNA, we designed and synthesized topologically and chemically modified mRNAs with multiple synthetic poly(A) tails. Here we demonstrate that the optimized multitailed mRNA yielded ~4.7-19.5-fold higher luminescence signals than the control mRNA from 24 to 72 h post transfection in cellulo and 14 days detectable signal versus <7 days signal from the control in vivo. We further achieve efficient multiplexed genome editing of the clinically relevant genes Pcsk9 and Angptl3 in mouse liver at a minimal mRNA dosage. Taken together, these results provide a generalizable approach to synthesize capped branched mRNA with markedly enhanced translation capacity.

PubMed Disclaimer

Similar articles

References

    1. Sahin, U., Karikó, K. & Türeci, Ö. mRNA-based therapeutics—developing a new class of drugs. Nat. Rev. Drug Discov. 13, 759–780 (2014). - PubMed - DOI
    1. Weng, Y. et al. The challenge and prospect of mRNA therapeutics landscape. Biotechnol. Adv. 40, 107534 (2020). - PubMed - DOI
    1. Rohner, E., Yang, R., Foo, K. S., Goedel, A. & Chien, K. R. Unlocking the promise of mRNA therapeutics. Nat. Biotechnol. 40, 1586–1600 (2022). - PubMed - DOI
    1. Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021). - PubMed - DOI
    1. Walsh, E. E. et al. Safety and immunogenicity of two RNA-based COVID-19 vaccine candidates. N. Engl. J. Med. 383, 2439–2450 (2020) - PubMed - DOI

LinkOut - more resources

-