Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 May 21;121(21):e2401567121.
doi: 10.1073/pnas.2401567121. Epub 2024 May 15.

Temperature compensation through kinetic regulation in biochemical oscillators

Affiliations

Temperature compensation through kinetic regulation in biochemical oscillators

Haochen Fu et al. Proc Natl Acad Sci U S A. .

Abstract

Nearly all circadian clocks maintain a period that is insensitive to temperature changes, a phenomenon known as temperature compensation (TC). Yet, it is unclear whether there is any common feature among different systems that exhibit TC. From a general timescale invariance, we show that TC relies on the existence of certain period-lengthening reactions wherein the period of the system increases strongly with the rates in these reactions. By studying several generic oscillator models, we show that this counterintuitive dependence is nonetheless a common feature of oscillators in the nonlinear (far-from-onset) regime where the oscillation can be separated into fast and slow phases. The increase of the period with the period-lengthening reaction rates occurs when the amplitude of the slow phase in the oscillation increases with these rates while the progression speed in the slow phase is controlled by other rates of the system. The positive dependence of the period on the period-lengthening rates balances its inverse dependence on other kinetic rates in the system, which gives rise to robust TC in a wide range of parameters. We demonstrate the existence of such period-lengthening reactions and their relevance for TC in all four model systems we considered. Theoretical results for a model of the Kai system are supported by experimental data. A study of the energy dissipation also shows that better TC performance requires higher energy consumption. Our study unveils a general mechanism by which a biochemical oscillator achieves TC by operating in parameter regimes far from the onset where period-lengthening reactions exist.

Keywords: biochemical oscillators; circadian clocks; kinetic regulation; temperature compensation.

PubMed Disclaimer

Conflict of interest statement

Competing interests statement:The authors declare no competing interest.

Similar articles

References

    1. Arrhenius S., Über die reaktionsgeschwindigkeit bei der inversion von rohrzucker durch säuren. Z. Phys. Chem. 4, 226–248 (1889).
    1. Phillips R., Kondev J., Theriot J., Garcia H., Physical Biology of the Cell (Garland Science, 2012).
    1. Milo R., Phillips R., Cell Biology by the Numbers (Garland Science, 2015).
    1. Knapp B. D., Huang K. C., The effects of temperature on cellular physiology. Annu. Rev. Biophys. 51, 499–526 (2022). - PubMed
    1. Bennett A. F., Thermal dependence of muscle function. Am. J. Physiol. 247, R217–R229 (1984). - PubMed

LinkOut - more resources

-