Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1983 Jul;245(1):C1-14.
doi: 10.1152/ajpcell.1983.245.1.C1.

Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum

Review

Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum

A Fabiato. Am J Physiol. 1983 Jul.

Abstract

The hypothesis of a Ca2+-induced Ca2+ release (CICR) from the sarcoplasmic reticulum (SR) is supported by experiments done in skinned cardiac cells (sarcolemma removed by microdissection). According to this hypothesis, the transsarcolemmal Ca2+ influx does not activate the myofilaments directly but through the induction of a Ca2+ release from the SR. The stimulus gating CICR is not a small change in free Ca2+ concentration (delta[free Ca2+]) outside the SR but a function of the rate of this change (delta[free Ca2+/delta t]). The initial relatively fast component of the transsarcolemmal Ca2+ current would trigger Ca2+ release; the subsequent slow component, perhaps corresponding to noninactivating Ca2+ channels, would load the SR with an amount of Ca2+ available for release during subsequent beats. Inactivation of CICR is caused by the large increase of [free Ca2+] outside the SR resulting from Ca2+ release, which inhibits further release. This negative feedback helps to explain that CICR is not all or none. During relaxation the Ca2+ reaccumulation in the SR is backed up by the Ca2+ efflux across the sarcolemma through Na+-Ca2+ exchange and the sarcolemmal Ca2+ pump. Computations of the Ca2+ buffering in the mammalian ventricular cell and of the systolic transsarcolemmal Ca2+ influx do not support the alternative hypothesis that this influx of Ca2+ is large enough to activate the myofilaments directly. Yet the hypothesis of a CICR can be challenged because of many problems and uncertainties related to the preparations and methods used for skinned cardiac cell experiments.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

LinkOut - more resources

-