Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1982 Jan;28(1):71-81.
doi: 10.1016/0092-8674(82)90376-2.

Survival of mononuclear phagocytes depends on a lineage-specific growth factor that the differentiated cells selectively destroy

Survival of mononuclear phagocytes depends on a lineage-specific growth factor that the differentiated cells selectively destroy

R J Tushinski et al. Cell. 1982 Jan.

Abstract

CSF-1 is a hemopoietic growth factor that specifically causes the proliferation and differentiation of mononuclear phagocytic cells. Receptors for CSF-1 occur exclusively on cells of the mononuclear phagocytic series (precursor leads to monoblast leads to promonocyte leads to monocyte leads to macrophage). Studies of the actions of CSF-1 on freshly explanted macrophages have been complicated by contamination of the primary cell isolates with CSF-1-producing cells and by the heterogeneity of the proliferative responses of individual macrophages. A method is described for the production of a highly purified and homogeneous population of adherent bone marrow-derived macrophages (BMMs) that are devoid of CSF-1-producing cells. The method may also be used to obtain nonadherent precursors of the mononuclear phagocytic series. Studies of CSF-1 action and degradation in cultures of BMMs have revealed several new findings. First, CSF-1 is required for both the survival (without proliferation) and the proliferation of BMMs. Second, CSF-1 is degraded by BMMs in a concentration-dependent manner, over the range of concentrations that stimulates both cell survival and proliferation. Third, the rate of CSF-1 degradation is saturable (or approximately 7 X 10(4) molecules per cell per hour) at CSF-1 concentrations that cause maximum proliferation (or approximately 0.4 nM). Under these conditions, BMMs are greatly enlarged and contain numerous phase-lucent vacuoles. Thus macrophages specifically require CSF-1 for both survival and proliferation, yet selectively and rapidly degrade it. This apparent dichotomy may have important implications for the role of CSF-1 in macrophage homeostasis in vivo.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources

-