Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Feb;33(3):165-75.
doi: 10.1016/s0166-3542(96)01012-1.

Antiviral effects of 6-diazo-5-oxo-L-norleucin on replication of herpes simplex virus type 1

Affiliations

Antiviral effects of 6-diazo-5-oxo-L-norleucin on replication of herpes simplex virus type 1

J Cinatl et al. Antiviral Res. 1997 Feb.

Abstract

An L-glutamine antagonist, 6-diazo-5-oxo-L-norleucin (L-DON), inhibits replication of vesicular stomatitis virus, poliovirus and paramyxoviruses in cultured cells. We tested the antiviral activity of L-DON against different strains of herpes simplex virus type 1 (HSV-1) in Vero cells. In the presence of a physiological plasma concentration of L-glutamine (0.5mM) L-Don inhibited 50% production of virus plaques at concentrations ranging from 7.9 to 16 microM. At concentrations of 40 microM L-Don inhibited infectious virus yield by 99%. The antiviral activity of L-DON decreased with increasing L-glutamine concentrations. A concentration of 5000 microM of L-Don had no significant effects on the viability of Vero cells. Transmission electron microscopical investigations showed that L-DON prevented mainly envelopment of viral nucleocapsids in the cytoplasm. The immunoprecipitation experiments demonstrated selective inhibition of synthesis of HSV-1 glycoproteins in L-DON treated cells. The results showed that L-DON inhibits HSV-1 replication at a late stage in the virus replication cycle, probably the cytoplasmic maturation of virions and subsequent virion egress from the cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources

-