Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Mar 15;11(6):701-13.
doi: 10.1101/gad.11.6.701.

The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal

Affiliations
Free article

The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal

S G Kennedy et al. Genes Dev. .
Free article

Abstract

Serum and certain growth factors have the ability to inhibit programmed cell death (apoptosis) and promote survival. The mechanism by which growth factors deliver an anti-apoptotic signal and the mechanism by which this survival signal is uncoupled from mitogenesis are not clear. We studied five downstream effectors of growth factor receptors--Ras, Raf, Src, phosphoinositide 3-kinase (PI 3-kinase), and Akt (PKB)--for their abilities to block apoptosis. Activated forms of Ras, Raf, and Src, although transforming, were not sufficient to deliver a survival signal upon serum withdrawal. In contrast, inhibition of PI 3-kinase accelerated apoptosis, and an activated form of the serine/threonine kinase Akt, a downstream effector of PI 3-kinase, blocked apoptosis. The ability of Akt to promote survival was dependent on and proportional to its kinase activity. In Rat1a fibroblasts, activated Akt did not alter Bcl-2 or Bcl-X(L) expression but inhibited Ced3/ICE-like activity. Thus, the PI 3-kinase/Akt (PKB) signaling pathway transduces a survival signal that ultimately blocks Ced3/ICE-like activity. These results suggest that uncoupling of survival and mitogenesis can be explained by differing abilities of distinct mitogens to efficiently induce the PI 3-kinase/Akt signaling pathway.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources

-