Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Jun 6;272(23):14501-4.
doi: 10.1074/jbc.272.23.14501.

Induction of cytosolic phospholipase A2 by oncogenic Ras in human non-small cell lung cancer

Affiliations
Free article

Induction of cytosolic phospholipase A2 by oncogenic Ras in human non-small cell lung cancer

L E Heasley et al. J Biol Chem. .
Free article

Abstract

Mutations in Ras family members that confer oncogenic potential are frequently observed in specific human cancers. We report that human non-small cell lung cancer (NSCLC) lines that harbor oncogenic mutations in Ki-Ras (H460, A549, H2122) synthesized high levels of prostaglandin E2 (PGE2) compared with NSCLC lacking Ras mutations or non-transformed lung epithelial cells (BEAS-2B). This increased PGE2 production was mediated by constitutively high expression of 85-kDa cytosolic phospholipase A2 (cPLA2) and cyclooxygenase 2 (COX-2). The increased expression of cPLA2 protein was mediated through elevated mRNA levels and activation of the cPLA2 promoter. Induction of cPLA2 promoter activity was blocked by expression of dominant-negative forms of Ras. Inhibition of Ras by the farnesyltransferase inhibitor BZA-5B inhibited prostaglandin synthesis in H2122 cells by decreasing expression of both cPLA2 and COX-2. Finally, inhibitors of eicosanoid synthesis blocked anchorage-independent growth of NSCLC lines exhibiting Ki-Ras mutations. These results identify cPLA2 as a novel Ras-inducible regulator of eicosanoid synthesis that participates in cellular transformation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources

-