Real-world non-autonomous systems are open, out-of-equilibrium systems that evolve in and are driven by temporally varying environments. Such systems can show multiple timescale and transient dynamics together with transitions to very different and, at times, even disastrous dynamical regimes. Since such critical transitions disrupt the systems’ intended or desired functionality, it is crucial to understand the underlying mechanisms, to identify precursors of such transitions, and to reliably detect them in time series of suitable system observables to enable forecasts. This review critically assesses the various steps of investigation involved in time-series-analysis-based detection of critical transitions in real-world non-autonomous systems: from the data recording to evaluating the reliability of offline and online detections. It will highlight pros and cons to stimulate further developments, which would be necessary to advance understanding and forecasting nonlinear behavior such as critical transitions in complex systems.

1.
Extreme Events in Nature and Society, The Frontiers Collection, edited by S. Albeverio, V. Jentsch, and H. Kantz (Springer, Berlin, 2006).
2.
R.
Basher
, “
Global early warning systems for natural hazards: Systematic and people-centred
,”
Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci.
364
,
2167
2182
(
2006
).
3.
H. E.
Willoughby
,
E.
Rappaport
, and
F.
Marks
, “
Hurricane forecasting: The state of the art
,”
Nat. Hazards Rev.
8
,
45
49
(
2007
).
4.
T. M.
Lenton
, “
Early warning of climate tipping points
,”
Nat. Clim. Change
1
,
201
(
2011
).
5.
G.
Ansmann
,
R.
Karnatak
,
K.
Lehnertz
, and
U.
Feudel
, “
Extreme events in excitable systems and mechanisms of their generation
,”
Phys. Rev. E
88
,
052911
(
2013
).
6.
E.
Meron
,
Nonlinear Physics of Ecosystems
(
CRC Press
,
Boca Raton, FL
,
2015
).
7.
C.
Trefois
,
P. M.
Antony
,
J.
Goncalves
,
A.
Skupin
, and
R.
Balling
, “
Critical transitions in chronic disease: Transferring concepts from ecology to systems medicine
,”
Curr. Opin. Biotechnol.
34
,
48
55
(
2015
).
8.
E.
Intrieri
and
G.
Gigli
, “
Landslide forecasting and factors influencing predictability
,”
Nat. Hazards Earth Syst. Sci.
16
,
2501
2510
(
2016
).
9.
B.
Bok
,
D.
Caratelli
,
D.
Giannone
,
A. M.
Sbordone
, and
A.
Tambalotti
, “
Macroeconomic nowcasting and forecasting with big data
,”
Annu. Rev. Econ.
10
,
615
643
(
2018
).
10.
T. P.
Sapsis
, “
New perspectives for the prediction and statistical quantification of extreme events in high-dimensional dynamical systems
,”
Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci.
376
,
20170133
(
2018
).
11.
S.
Hanifi
,
X.
Liu
,
Z.
Lin
, and
S.
Lotfian
, “
A critical review of wind power forecasting methods—Past, present and future
,”
Energies
13
,
3764
(
2020
).
12.
A.
Morozov
,
K.
Abbott
,
K.
Cuddington
,
T.
Francis
,
G.
Gellner
,
A.
Hastings
,
Y.-C.
Lai
,
S.
Petrovskii
,
K.
Scranton
, and
M. L.
Zeeman
, “
Long transients in ecology: Theory and applications
,”
Phys. Life Rev.
32
,
1
40
(
2020
).
13.
M.
Scheffer
,
Critical Transitions in Nature and Society
(
Princeton University Press
,
Princeton, NJ
,
2020
).
14.
J. B.
Rundle
,
S.
Stein
,
A.
Donnellan
,
D. L.
Turcotte
,
W.
Klein
, and
C.
Saylor
, “
The complex dynamics of earthquake fault systems: New approaches to forecasting and nowcasting of earthquakes
,”
Rep. Prog. Phys.
84
,
076801
(
2021
).
15.
Q.
Bletery
and
J.-M.
Nocquet
, “
The precursory phase of large earthquakes
,”
Science
381
,
297
301
(
2023
).
16.
F.
Cerini
,
D. Z.
Childs
, and
C. F.
Clements
, “
A predictive timeline of wildlife population collapse
,”
Nat. Ecol. Evol.
7
,
320
331
(
2023
).
17.
D. I.
Domeisen
,
E. A.
Eltahir
,
E. M.
Fischer
,
R.
Knutti
,
S. E.
Perkins-Kirkpatrick
,
C.
Schär
,
S. I.
Seneviratne
,
A.
Weisheimer
, and
H.
Wernli
, “
Prediction and projection of heatwaves
,”
Nat. Rev. Earth Environ.
4
,
36
50
(
2023
).
18.
K.
Lehnertz
,
T.
Bröhl
, and
R.
von Wrede
, “
Epileptic-network-based prediction and control of seizures in humans
,”
Neurobiol. Dis.
181
,
106098
(
2023
).
19.
B. M.
Flores
,
E.
Montoya
,
B.
Sakschewski
,
N.
Nascimento
,
A.
Staal
,
R. A.
Betts
,
C.
Levis
,
D. M.
Lapola
,
A.
Esquível-Muelbert
,
C.
Jakovac
et al., “
Critical transitions in the Amazon forest system
,”
Nature
626
,
555
564
(
2024
).
20.
J. L.
Hardebeck
,
A. L.
Llenos
,
A. J.
Michael
,
M. T.
Page
,
M.
Schneider
, and
N. J.
van der Elst
, “
Aftershock forecasting
,”
Annu. Rev. Earth Planet. Sci.
52
,
2.1
2.24
(
2024
).
21.
W.
Horsthemke
and
R.
Lefever
,
Noise-Induced Transitions: Theory and Applications in Physics, Chemistry and Biology
(
Springer
,
Berlin
,
1984
).
22.
C.
Kuehn
, “
A mathematical framework for critical transitions: Bifurcations, fast-slow systems and stochastic dynamics
,”
Physica D
240
,
1020
1035
(
2011
).
23.
P.
Ashwin
,
S.
Wieczorek
,
R.
Vitolo
, and
P.
Cox
, “
Tipping points in open systems: Bifurcation, noise-induced and rate-dependent examples in the climate system
,”
Philos. Trans. Roy. Soc. A
370
,
1166
1184
(
2012
).
24.
U.
Feudel
, “
Rate-induced tipping in ecosystems and climate: The role of unstable states, basin boundaries and transient dynamics
,”
Nonlin. Processes Geophys. Discussions
2023
,
1
29
(
2023
).
25.
G. R.
Sell
, “
Nonautonomous differential equations and topological dynamics. I. The basic theory
,”
Trans. Am. Math. Soc.
127
,
241
262
(
1967
).
26.
P. E.
Kloeden
and
M.
Rasmussen
,
Nonautonomous Dynamical Systems
(
American Mathematical Soc.
,
Providence, RI
,
2011
).
27.
I.
Pavithran
,
P.
Midhun
, and
R.
Sujith
, “
Tipping in complex systems under fast variations of parameters
,”
Chaos
33
,
081105
(
2023
).
28.
P. T.
Clemson
and
A.
Stefanovska
, “
Discerning non-autonomous dynamics
,”
Phys. Rep.
542
,
297
368
(
2014
).
29.
H.
Kantz
and
T.
Schreiber
,
Nonlinear Time Series Analysis
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
2003
).
30.
S.
Boccaletti
,
V.
Latora
,
Y.
Moreno
,
M.
Chavez
, and
D.-U.
Hwang
, “
Complex networks: Structure and dynamics
,”
Phys. Rep.
424
,
175
308
(
2006
).
31.
Y.
Zou
,
R. V.
Donner
,
N.
Marwan
,
J. F.
Donges
, and
J.
Kurths
, “
Complex network approaches to nonlinear time series analysis
,”
Phys. Rep.
787
,
1
97
(
2019
).
32.
J.
Amigó
,
Permutation Complexity in Dynamical Systems: Ordinal Patterns, Permutation Entropy and All That
(
Springer Science & Business Media
,
Berlin
,
2010
).
33.
F.
Kwasniok
and
L. A.
Smith
, “
Real-time construction of optimized predictors from data streams
,”
Phys. Rev. Lett.
92
,
164101
(
2004
).
34.
A.
Mignan
, “
The debate on the prognostic value of earthquake foreshocks: A meta-analysis
,”
Sci. Rep.
4
,
4099
(
2014
).
35.
A.
Mignan
,
G.
Ouillon
,
D.
Sornette
, and
F.
Freund
, “
Global earthquake forecasting system (GEFS): The challenges ahead
,”
Eur. Phys. J. ST
230
,
473
490
(
2021
).
36.
H.
Nyquist
, “
Certain topics in telegraph transmission theory
,”
Trans. AIEE
47
,
617
644
(
1928
).
37.
C. E.
Shannon
, “
Communication in the presence of noise
,”
Proc. IRE
37
,
10
21
(
1949
).
38.
A. J.
Jerri
, “
The Shannon sampling theorem—Its various extensions and applications: A tutorial review
,”
Proc. IEEE
65
,
1565
1596
(
1977
).
39.
S.
Bialonski
,
M.
Horstmann
, and
K.
Lehnertz
, “
From brain to earth and climate systems: Small-world interaction networks or not?
,”
Chaos
20
,
013134
(
2010
).
40.
S.
Porz
,
M.
Kiel
, and
K.
Lehnertz
, “
Can spurious indications for phase synchronization due to superimposed signals be avoided?
,”
Chaos
24
,
033112
(
2014
).
41.
A.
Effern
,
K.
Lehnertz
,
T.
Schreiber
,
T.
Grunwald
,
P.
David
, and
C. E.
Elger
, “
Nonlinear denoising of transient signals with application to event-related potentials
,”
Physica D
140
,
257
266
(
2000
).
42.
I. M.
Jánosi
and
T.
Tél
, “
Time-series analysis of transient chaos
,”
Phys. Rev. E
49
,
2756
2763
(
1994
).
43.
M.
Dhamala
,
Y.-C.
Lai
, and
E. J.
Kostelich
, “
Analyses of transient chaotic time series
,”
Phys. Rev. E
64
,
056207
(
2001
).
44.
R. G.
Andrzejak
,
A.
Ledberg
, and
G.
Deco
, “
Detecting event-related time-dependent directional couplings
,”
New J. Phys.
8
,
6
(
2006
).
45.
S.
Łeski
and
D. K.
Wójcik
, “
Inferring coupling strength from event-related dynamics
,”
Phys. Rev. E
78
,
41918
41927
(
2008
).
46.
C.
Komalapriya
,
M.
Thiel
,
M. C.
Romano
,
N.
Marwan
,
U.
Schwarz
, and
J.
Kurths
, “
Reconstruction of a system’s dynamics from short trajectories
,”
Phys. Rev. E
78
,
066217
(
2008
).
47.
T.
Wagner
,
J.
Fell
, and
K.
Lehnertz
, “
The detection of transient directional couplings based on phase synchronization
,”
New J. Phys.
12
,
053031
(
2010
).
48.
M.
Martini
,
T. A.
Kranz
,
T.
Wagner
, and
K.
Lehnertz
, “
Inferring directional interactions from transient signals with symbolic transfer entropy
,”
Phys. Rev. E
83
,
011919
(
2011
).
49.
H.
Ma
,
T.
Zhou
,
K.
Aihara
, and
L.
Chen
, “
Predicting time series from short-term high-dimensional data
,”
Int. J. Bifurcation Chaos
24
,
1430033
(
2014
).
50.
W.-X.
Wang
,
Y.-C.
Lai
, and
C.
Grebogi
, “
Data based identification and prediction of nonlinear and complex dynamical systems
,”
Phys. Rep.
644
,
1
76
(
2016
).
51.
K.
Kaneko
, “
Supertransients, spatiotemporal intermittency and stability of fully developed spatiotemporal chaos
,”
Phys. Lett. A
149
,
105
112
(
1990
).
52.
T.
Tél
and
Y.-C.
Lai
, “
Chaotic transients in spatially extended systems
,”
Phys. Rep.
460
,
245
275
(
2008
).
53.
H.
Meyer-Ortmanns
, “
Heteroclinic networks for brain dynamics
,”
Front. Netw. Physiol.
3
,
1276401
(
2023
).
54.
G.
Ansmann
,
K.
Lehnertz
, and
U.
Feudel
, “
Self-induced switchings between multiple space-time patterns on complex networks of excitable units
,”
Phys. Rev. X
6
,
011030
(
2016
).
55.
A.
Nandan
and
A.
Koseska
, “
Non-asymptotic transients away from steady states determine cellular responsiveness to dynamic spatial-temporal signals
,”
PLoS Comput. Biol.
19
,
e1011388
(
2023
).
56.
L.
Boltzmann
,
Über die Beziehung zwischen dem zweiten Hauptsatze des mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung, respective den Sätzen über das Wärmegleichgewicht
(
K.k. Hof-und Staatsdruckerei
,
Vienna
,
1877
).
57.
G. D.
Birkhoff
, “
Proof of the ergodic theorem
,”
Proc. Natl. Acad. Sci. U. S. A.
17
,
656
660
(
1931
).
58.
M. B.
Priestley
,
Nonlinear and Non-Stationary Time Series Analysis
(
Academic Press
,
London
,
1988
).
59.
K. M. M.
Prabhu
,
Window Functions and Their Applications in Signal Processing
(
Taylor & Francis
,
Boca Raton
,
2014
).
60.
G.
Kitagawa
, “
Non-Gaussian state—space modeling of nonstationary time series
,”
J. Am. Stat. Assoc.
82
,
1032
1041
(
1987
).
61.
R.
Dahlhaus
, “
Fitting time series models to nonstationary processes
,”
Ann. Stat.
25
,
1
37
(
1997
).
62.
N. E.
Huang
,
Z.
Shen
,
S. R.
Long
,
M. C.
Wu
,
H. H.
Shih
,
Q.
Zheng
,
N.-C.
Yen
,
C. C.
Tung
, and
H. H.
Liu
, “
The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
,”
Proc. Roy. Soc. London Ser. A Math. Phys. Eng. Sci.
454
,
903
995
(
1998
).
63.
P.
Verdes
,
P.
Granitto
,
H.
Navone
, and
H.
Ceccatto
, “
Nonstationary time-series analysis: Accurate reconstruction of driving forces
,”
Phys. Rev. Lett.
87
,
124101
(
2001
).
64.
J. W.
Kantelhardt
,
S. A.
Zschiegner
,
E.
Koscielny-Bunde
,
S.
Havlin
,
A.
Bunde
, and
H. E.
Stanley
, “
Multifractal detrended fluctuation analysis of nonstationary time series
,”
Physica A
316
,
87
114
(
2002
).
65.
K.
Fukuda
,
H. E.
Stanley
, and
L. A. N.
Amaral
, “
Heuristic segmentation of a nonstationary time series
,”
Phys. Rev. E
69
,
021108
(
2004
).
66.
Z.
Wu
,
N. E.
Huang
,
S. R.
Long
, and
C.-K.
Peng
, “
On the trend, detrending, and variability of nonlinear and nonstationary time series
,”
Proc. Natl. Acad. Sci. U. S. A.
104
,
14889
14894
(
2007
).
67.
K.
Lehnertz
,
C.
Geier
,
T.
Rings
, and
K.
Stahn
, “
Capturing time-varying brain dynamics
,”
EPJ Nonlin. Biomed. Phys.
5
,
2
(
2017
).
68.
B.
Podobnik
and
H. E.
Stanley
, “
Detrended cross-correlation analysis: A new method for analyzing two nonstationary time series
,”
Phys. Rev. Lett.
100
,
084102
(
2008
).
69.
M.
Rhif
,
A.
Ben Abbes
,
I. R.
Farah
,
B.
Martínez
, and
Y.
Sang
, “
Wavelet transform application for/in non-stationary time-series analysis: A review
,”
Appl. Sci.
9
,
1345
(
2019
).
70.
R.
Hegger
,
H.
Kantz
,
L.
Matassini
, and
T.
Schreiber
, “
Coping with non-stationarity by overembedding
,”
Phys. Rev. Lett.
84
,
4092
4095
(
2000
).
71.
P.
Verdes
,
P.
Granitto
, and
H.
Ceccatto
, “
Overembedding method for modeling nonstationary systems
,”
Phys. Rev. Lett.
96
,
118701
(
2006
).
72.
M.
De Domenico
and
V.
Latora
, “
Fast detection of nonlinearity and nonstationarity in short and noisy time series
,”
Europhys. Lett.
91
,
30005
(
2010
).
73.
R.
Manuca
and
R.
Savit
, “
Stationarity and nonstationarity in time series analysis
,”
Phys. D
99
,
134
161
(
1996
).
74.
M. B.
Kennel
, “
Statistical test for dynamical nonstationarity in observed time-series data
,”
Phys. Rev. E
56
,
316
321
(
1997
).
75.
J.
Gao
, “
Detecting nonstationarity and state transitions in a time series
,”
Phys. Rev. E
63
,
066202
(
2001
).
76.
C.
Rieke
,
K.
Sternickel
,
R. G.
Andrzejak
,
C. E.
Elger
,
P.
David
, and
K.
Lehnertz
, “
Measuring nonstationarity by analyzing the loss of recurrence in dynamical systems
,”
Phys. Rev. Lett.
88
,
244102
(
2002
).
77.
C.
Rieke
,
R. G.
Andrzejak
,
F.
Mormann
, and
K.
Lehnertz
, “
Improved statistical test for nonstationarity using recurrence time statistics
,”
Phys. Rev. E
69
,
046111
(
2004
).
78.
A.
Facchini
,
H.
Kantz
, and
E.
Tiezzi
, “
Recurrence plot analysis of nonstationary data: The understanding of curved patterns
,”
Phys. Rev. E
72
,
021915
(
2005
).
79.
Y.
Chen
and
H.
Yang
, “
Multiscale recurrence analysis of long-term nonlinear and nonstationary time series
,”
Chaos Solitons Fractals
45
,
978
987
(
2012
).
80.
T.
Schreiber
, “
Detecting and analysing nonstationarity in a time series using nonlinear cross predictions
,”
Phys. Rev. Lett.
78
,
843
(
1997
).
81.
M. B.
Kennel
and
A. I.
Mees
, “
Testing for general dynamical stationarity with a symbolic data compression technique
,”
Phys. Rev. E
61
,
2563
(
2000
).
82.
P. M.
Robinson
, “
Efficient tests of nonstationary hypotheses
,”
J. Am. Stat. Assoc.
89
,
1420
1437
(
1994
).
83.
A.
Witt
,
J.
Kurths
, and
A.
Pikovsky
, “
Testing stationarity in time series
,”
Phys. Rev. E
58
,
1800
1810
(
1998
).
84.
D. C.
Champeney
,
Fourier Transforms and Their Physical Applications
(
Academic Press
,
Cambridge, MA
,
1973
).
85.
T. A.
Brody
,
J.
Flores
,
J. B.
French
,
P. A.
Mello
,
A.
Pandey
, and
S. S. M.
Wong
, “
Random-matrix physics: Spectrum and strength fluctuations
,”
Rev. Mod. Phys.
53
,
385
479
(
1981
).
86.
Nonlinear Methods of Spectral Analysis, edited by S. Haykin (Springer, Berlin, 1983).
87.
P.
Grassberger
,
T.
Schreiber
, and
C.
Schaffrath
, “
Nonlinear time sequence analysis
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
1
,
521
(
1991
).
88.
H. D. I.
Abarbanel
,
R.
Brown
,
J. J.
Sidorowich
, and
L. S.
Tsimring
, “
The analysis of observed chaotic data in physical systems
,”
Rev. Mod. Phys.
65
,
1331
(
1993
).
89.
J.
Honerkamp
,
Stochastic Dynamical Systems: Concepts, Numerical Methods, Data Analysis
(
Wiley-VCH
,
New York
,
1993
).
90.
D.
Kaplan
and
L.
Glass
,
Understanding Nonlinear Dynamics
(
Springer
,
New York
,
1995
).
91.
D. B.
Percival
and
A. T.
Walden
,
Wavelet Methods for Time Series Analysis
(
Cambridge University Press
,
Cambridge
,
2000
), Vol. 4.
92.
A. S.
Pikovsky
,
M. G.
Rosenblum
, and
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
Cambridge
,
2001
).
93.
C.
Daw
,
C.
Finney
, and
E.
Tracy
, “
A review of symbolic analysis of experimental data
,”
Rev. Sci. Instrum.
74
,
915
930
(
2003
).
94.
G. C.
Reinsel
,
Elements of Multivariate Time Series Analysis
, 2nd ed. (
Springer
,
New York
,
2003
).
95.
K.
Keller
and
M.
Sinn
, “
Ordinal analysis of time series
,”
Physica A
356
,
114
120
(
2005
).
96.
H.
Lütkepohl
,
New Introduction to Multiple Time Series Analysis
(
Springer Science & Business Media
,
Berlin
,
2005
).
97.
K.
Hlaváčková-Schindler
,
M.
Paluš
,
M.
Vejmelka
, and
J.
Bhattacharya
, “
Causality detection based on information-theoretic approaches in time series analysis
,”
Phys. Rep.
441
,
1
46
(
2007
).
98.
N.
Marwan
,
M. C.
Romano
,
M.
Thiel
, and
J.
Kurths
, “
Recurrence plots for the analysis of complex systems
,”
Phys. Rep.
438
,
237
329
(
2007
).
99.
L.
Lacasa
,
B.
Luque
,
F.
Ballesteros
,
J.
Luque
, and
J. C.
Nuno
, “
From time series to complex networks: The visibility graph
,”
Proc. Natl. Acad. Sci. U. S. A.
105
,
4972
4975
(
2008
).
100.
T. W.
Anderson
,
The Statistical Analysis of Time Series
(
John Wiley & Sons
,
Hoboken, NJ
,
2011
).
101.
R.
Friedrich
,
J.
Peinke
,
M.
Sahimi
, and
M. R. R.
Tabar
, “
Approaching complexity by stochastic methods: From biological systems to turbulence
,”
Phys. Rep.
506
,
87
162
(
2011
).
102.
U.
von Toussaint
, “
Bayesian inference in physics
,”
Rev. Mod. Phys.
83
,
943
(
2011
).
103.
E.
Bradley
and
H.
Kantz
, “
Nonlinear time-series analysis revisited
,”
Chaos
25
,
097610
(
2015
).
104.
C. L.
Webber, Jr.
and
N.
Marwan
,
Recurrence Quantification Analysis—Theory and Best Practices
(
Springer
,
Cham
,
2015
).
105.
T.
Stankovski
,
T.
Pereira
,
P. V. E.
McClintock
, and
A.
Stefanovska
, “
Coupling functions: Universal insights into dynamical interaction mechanisms
,”
Rev. Mod. Phys.
89
,
045001
(
2017
).
106.
M. R. R.
Tabar
,
Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems: Using the Methods of Stochastic Processes
(
Springer International Publishin
,
Cham
,
2019
).
107.
J. D.
Hamilton
,
Time Series Analysis
(
Princeton University Press
,
2020
).
108.
T.
Edinburgh
,
S. J.
Eglen
, and
A.
Ercole
, “
Causality indices for bivariate time series data: A comparative review of performance
,”
Chaos
31
,
083111
(
2021
).
109.
G.
Datseris
and
U.
Parlitz
,
Nonlinear Dynamics: A Concise Introduction Interlaced with Code
(
Springer International Publishing
,
Cham
,
2022
).
110.
K.
Fokianos
,
R.
Fried
,
Y.
Kharin
, and
V.
Voloshko
, “
Statistical analysis of multivariate discrete-valued time series
,”
J. Multivar. Anal.
188
,
104805
(
2022
).
111.
F.
Nikakhtar
,
L.
Parkavousi
,
M.
Sahimi
,
M. R. R.
Tabar
,
U.
Feudel
, and
K.
Lehnertz
, “
Data-driven reconstruction of stochastic dynamical equations based on statistical moments
,”
New J. Phys.
25
,
083025
(
2023
).
112.
M. R. R.
Tabar
,
F.
Nikakhtar
,
L.
Parkavousi
,
A.
Akhshi
,
U.
Feudel
, and
K.
Lehnertz
, “
Revealing higher-order interactions in high-dimensional complex systems: A data-driven approach
,”
Phys. Rev. X
14
,
011050
(
2024
).
113.
N. H.
Packard
,
J. P.
Crutchfield
,
J. D.
Farmer
, and
R. S.
Shaw
, “
Geometry from a time series
,”
Phys. Rev. Lett.
45
,
712
716
(
1980
).
114.
F.
Takens
, “Detecting strange attractors in turbulence,” in Dynamical Systems and Turbulence (Warwick 1980), Lecture Notes in Mathematics Vol. 898, edited by D. A. Rand and L.-S. Young (Springer, Berlin, 1981), pp. 366–381.
115.
T.
Sauer
,
J.
Yorke
, and
M.
Casdagli
, “
Embedology
,”
J. Stat. Phys.
65
,
579
616
(
1991
).
116.
M.
Casdagli
,
S.
Eubank
,
J. D.
Farmer
, and
J.
Gibson
, “
State space reconstruction in the presence of noise
,”
Phys. D
51
,
52
98
(
1991
).
117.
M. B.
Kennel
,
R.
Brown
, and
H. D. I.
Abarbanel
, “
Determining embedding dimension for phase-space reconstruction using a geometrical construction
,”
Phys. Rev. A
45
,
3403
3411
(
1992
).
118.
D.
Kugiumtzis
, “
State space reconstruction parameters in the analysis of chaotic time series–the role of the time window length
,”
Phys. D
95
,
13
28
(
1996
).
119.
L.
Cao
, “
Practical method for determining the minimum embedding dimension of a scalar time series
,”
Physica D
110
,
43
50
(
1997
).
120.
C. J.
Cellucci
,
A. M.
Albano
, and
P. E.
Rapp
, “
Comparative study of embedding methods
,”
Phys. Rev. E
67
,
066210
(
2003
).
121.
I.
Vlachos
and
D.
Kugiumtzis
, “
Nonuniform state-space reconstruction and coupling detection
,”
Phys. Rev. E
82
,
016207
(
2010
).
122.
K.-H.
Krämer
,
G.
Datseris
,
J.
Kurths
,
I. Z.
Kiss
,
J. L.
Ocampo-Espindola
, and
N.
Marwan
, “
A unified and automated approach to attractor reconstruction
,”
New J. Phys.
23
,
033017
(
2021
).
123.
V.
Dakos
,
M.
Scheffer
,
E. H.
van Nes
,
V.
Brovkin
,
V.
Petoukhov
, and
H.
Held
, “
Slowing down as an early warning signal for abrupt climate change
,”
Proc. Natl. Acad. Sci. U. S. A.
105
,
14308
14312
(
2008
).
124.
M.
Scheffer
,
J.
Bascompte
,
W. A.
Brock
,
V.
Brovkin
,
S. R.
Carpenter
,
V.
Dakos
,
H.
Held
,
E. H.
van Nes
,
M.
Rietkerk
, and
G.
Sugihara
, “
Early-warning signals for critical transitions
,”
Nature
461
,
53
59
(
2009
).
125.
M.
Scheffer
,
S. R.
Carpenter
,
T. M.
Lenton
,
J.
Bascompte
,
W.
Brock
,
V.
Dakos
,
J.
van de Koppel
,
I. A.
van de Leemput
,
S. A.
Levin
,
E. H.
van Nes
,
M.
Pascual
, and
J.
Vandermeer
, “
Anticipating critical transitions
,”
Science
338
,
344
348
(
2012
).
126.
L.
Dai
,
D.
Vorselen
,
K. S.
Korolev
, and
J.
Gore
, “
Generic indicators for loss of resilience before a tipping point leading to population collapse
,”
Science
336
,
1175
1177
(
2012
).
127.
T.
Lenton
,
V.
Livina
,
V.
Dakos
,
E.
Van Nes
, and
M.
Scheffer
, “
Early warning of climate tipping points from critical slowing down: Comparing methods to improve robustness
,”
Philos. Trans. Roy. Soc. A: Math. Phys. Eng. Sci.
370
,
1185
1204
(
2012
).
128.
T. M.
Bury
,
C. T.
Bauch
, and
M.
Anand
, “
Detecting and distinguishing tipping points using spectral early warning signals
,”
J. Roy. Soc. Interface
17
,
20200482
(
2020
).
129.
R.
Kubo
, “
The fluctuation-dissipation theorem
,”
Rep. Prog. Phys.
29
,
255
(
1966
).
130.
E.
Cotilla-Sanchez
,
P. D.
Hines
, and
C. M.
Danforth
, “
Predicting critical transitions from time series synchrophasor data
,”
IEEE Trans. Smart Grid
3
,
1832
1840
(
2012
).
131.
V.
Dakos
,
S. R.
Carpenter
,
W. A.
Brock
,
A. M.
Ellison
,
V.
Guttal
,
A. R.
Ives
,
S.
Kéfi
,
V.
Livina
,
D. A.
Seekell
,
E. H.
van Nes
, and
M.
Scheffer
, “
Methods for detecting early warnings of critical transitions in time series illustrated using simulated ecological data
,”
PLoS One
7
,
1
20
(
2012
).
132.
I. A.
van de Leemput
,
M.
Wichers
,
A. O.
Cramer
,
D.
Borsboom
,
F.
Tuerlinckx
,
P.
Kuppens
,
E. H.
van Nes
,
W.
Viechtbauer
,
E. J.
Giltay
,
S. H.
Aggen
et al., “
Critical slowing down as early warning for the onset and termination of depression
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
87
92
(
2014
).
133.
C.
Meisel
,
A.
Klaus
,
C.
Kuehn
, and
D.
Plenz
, “
Critical slowing down governs the transition to neuron spiking
,”
PLoS Comput. Biol.
11
,
e1004097
(
2015
).
134.
M.
Perry
,
V.
Livina
, and
P.
Niewczas
, “
Tipping point analysis of cracking in reinforced concrete
,”
Smart Mater. Struct.
25
,
015027
(
2015
).
135.
F.
Nazarimehr
,
S.
Jafari
,
M.
Perc
, and
J. C.
Sprott
, “
Critical slowing down indicators
,”
Europhys. Lett.
132
,
18001
(
2020
).
136.
P.
Brookes
,
G.
Tancredi
,
A. D.
Patterson
,
J.
Rahamim
,
M.
Esposito
,
T. K.
Mavrogordatos
,
P. J.
Leek
,
E.
Ginossar
, and
M. H.
Szymanska
, “
Critical slowing down in circuit quantum electrodynamics
,”
Sci. Adv.
7
,
eabe9492
(
2021
).
137.
S. V.
George
,
S.
Kachhara
, and
G.
Ambika
, “
Early warning signals for critical transitions in complex systems
,”
Phys. Scr.
98
,
072002
(
2021
).
138.
E.
Southall
,
T. S.
Brett
,
M. J.
Tildesley
, and
L.
Dyson
, “
Early warning signals of infectious disease transitions: A review
,”
J. Roy. Soc. Interface
18
,
20210555
(
2021
).
139.
F.
Dablander
,
A.
Pichler
,
A.
Cika
, and
A.
Bacilieri
, “
Anticipating critical transitions in psychological systems using early warning signals: Theoretical and practical considerations
,”
Psychol. Methods
28
,
765
790
(
2022
).
140.
S.
Deb
,
S.
Bhandary
,
S. K.
Sinha
,
M. K.
Jolly
, and
P. S.
Dutta
, “
Identifying critical transitions in complex diseases
,”
J. Biosci.
47
,
25
(
2022
).
141.
P.
Ditlevsen
and
S.
Ditlevsen
, “
Warning of a forthcoming collapse of the Atlantic meridional overturning circulation
,”
Nat. Commun.
14
,
1
12
(
2023
).
142.
R.
Mathevet
,
P.
Marchou
,
C.
Fabre
,
N.
Lamrani
, and
N.
Combe
, “
Coriolis acceleration and critical slowing-down: A quantitative laboratory experiment
,”
Am. J. Phys.
92
,
100
107
(
2024
).
143.
P. D.
Ditlevsen
and
S. J.
Johnsen
, “
Tipping points: Early warning and wishful thinking
,”
Geophys. Res. Lett.
37
,
L19703
, (
2010
).
144.
C.
Boettiger
and
A.
Hastings
, “
Early warning signals and the prosecutor’s fallacy
,”
Proc. Roy. Soc. B Biol. Sci.
279
,
4734
4739
(
2012
).
145.
C.
Boettiger
and
A.
Hastings
, “
No early warning signals for stochastic transitions: Insights from large deviation theory
,”
Proc. Roy. Soc. B Biol. Sci.
280
,
20131372
(
2013
).
146.
C.
Boettiger
,
N.
Ross
, and
A.
Hastings
, “
Early warning signals: The charted and uncharted territories
,”
Theor. Ecol.
6
,
255
264
(
2013
).
147.
S.
Kéfi
,
V.
Dakos
,
M.
Scheffer
,
E. H.
Van Nes
, and
M.
Rietkerk
, “
Early warning signals also precede non-catastrophic transitions
,”
Oikos
122
,
641
648
(
2013
).
148.
V.
Guttal
,
C.
Jayaprakash
, and
O. P.
Tabbaa
, “
Robustness of early warning signals of regime shifts in time-delayed ecological models
,”
Theor. Ecol.
6
,
271
283
(
2013
).
149.
V.
Dakos
,
S. R.
Carpenter
,
E. H.
van Nes
, and
M.
Scheffer
, “
Resilience indicators: Prospects and limitations for early warnings of regime shifts
,”
Philos. Trans. R. Soc. B Biol. Sci.
370
,
20130263
(
2015
).
150.
L.
Dai
,
K. S.
Korolev
, and
J.
Gore
, “
Relation between stability and resilience determines the performance of early warning signals under different environmental drivers
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
10056
10061
(
2015
).
151.
C.
Diks
,
C.
Hommes
, and
J.
Wang
, “
Critical slowing down as an early warning signal for financial crises?
,”
Empir. Econ.
57
,
1201
1228
(
2019
).
152.
T. J.
Wagner
and
I.
Eisenman
, “
False alarms: How early warning signals falsely predict abrupt sea ice loss
,”
Geophys. Res. Lett.
42
,
10
333
(
2015
).
153.
X.
Zhang
,
C.
Kuehn
, and
S.
Hallerberg
, “
Predictability of critical transitions
,”
Phys. Rev. E
92
,
052905
(
2015
).
154.
V.
Guttal
,
S.
Raghavendra
,
N.
Goel
, and
Q.
Hoarau
, “
Lack of critical slowing down suggests that financial meltdowns are not critical transitions, yet rising variability could signal systemic risk
,”
PLoS One
11
,
e0144198
(
2016
).
155.
A. S.
Gsell
,
U.
Scharfenberger
,
D.
Özkundakci
,
A.
Walters
,
L.-A.
Hansson
,
A. B.
Janssen
,
P.
Nõges
,
P. C.
Reid
,
D. E.
Schindler
,
E.
Van Donk
,
V.
Dakos
, and
R.
Adrian
, “
Evaluating early-warning indicators of critical transitions in natural aquatic ecosystems
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
E8089
E8095
(
2016
).
156.
P.
Milanowski
and
P.
Suffczynski
, “
Seizures start without common signatures of critical transition
,”
Int. J. Neural Syst.
26
,
1650053
(
2016
).
157.
P. S.
Dutta
,
Y.
Sharma
, and
K. C.
Abbott
, “
Robustness of early warning signals for catastrophic and non-catastrophic transitions
,”
Oikos
127
,
1251
1263
(
2018
).
158.
H.
Wen
,
M. P.
Ciamarra
, and
S. A.
Cheong
, “
How one might miss early warning signals of critical transitions in time series data: A systematic study of two major currency pairs
,”
PLoS One
13
,
e0191439
(
2018
).
159.
F.
Romano
and
C.
Kuehn
, “
Analysis and predictability of tipping points with leading-order nonlinear term
,”
Int. J. Bifurcation Chaos
28
,
1850103
(
2018
).
160.
R.
Arumugam
,
S.
Sarkar
,
T.
Banerjee
,
S.
Sinha
, and
P. S.
Dutta
, “
Dynamic environment-induced multistability and critical transition in a metacommunity ecosystem
,”
Phys. Rev. E
99
,
032216
(
2019
).
161.
C. F.
Clements
,
M. A.
McCarthy
, and
J. L.
Blanchard
, “
Early warning signals of recovery in complex systems
,”
Nat. Commun.
10
,
1681
(
2019
).
162.
H.
Gatfaoui
and
P.
De Peretti
, “
Flickering in information spreading precedes critical transitions in financial markets
,”
Sci. Rep.
9
,
5671
(
2019
).
163.
G.
Jäger
and
M.
Füllsack
, “
Systematically false positives in early warning signal analysis
,”
PLoS One
14
,
e0211072
(
2019
).
164.
T.
Wilkat
,
T.
Rings
, and
K.
Lehnertz
, “
No evidence for critical slowing down prior to human epileptic seizures
,”
Chaos
29
,
091104
(
2019
).
165.
M.
Marconi
,
C.
Métayer
,
A.
Acquaviva
,
J.
Boyer
,
A.
Gomel
,
T.
Quiniou
,
C.
Masoller
,
M.
Giudici
, and
J.
Tredicce
, “
Testing critical slowing down as a bifurcation indicator in a low-dissipation dynamical system
,”
Phys. Rev. Lett.
125
,
134102
(
2020
).
166.
B.
van der Bolt
,
E. H.
van Nes
, and
M.
Scheffer
, “
No warning for slow transitions
,”
J. Roy. Soc. Interface
18
,
20200935
(
2021
).
167.
M.
Lapeyrolerie
and
C.
Boettiger
, “
Limits to ecological forecasting: Estimating uncertainty for critical transitions with deep learning
,”
Methods Ecol. Evol.
14
,
785
798
(
2023
).
168.
D. A.
O’Brien
,
S.
Deb
,
G.
Gal
,
S. J.
Thackeray
,
P. S.
Dutta
,
S.-I. S.
Matsuzaki
,
L.
May
, and
C. F.
Clements
, “
Early warning signals have limited applicability to empirical lake data
,”
Nat. Commun.
14
,
7942
(
2023
).
169.
D.
Proverbio
,
A.
Skupin
, and
J.
Gonçalves
, “
Systematic analysis and optimization of early warning signals for critical transitions using distribution data
,”
iScience
26
,
107156
(
2023
).
170.
C.
Grebogi
,
E.
Ott
, and
J. A.
Yorke
, “
Crises, sudden changes in chaotic attractors, and transient chaos
,”
Physica D
7
,
181
200
(
1983
).
171.
H. M.
Osinga
and
U.
Feudel
, “
Boundary crisis in quasiperiodically forced systems
,”
Phys. D
141
,
54
64
(
2000
).
172.
E.
Ott
and
J. C.
Summerer
, “
Blowout bifurcations: The occurence of riddled basins and on-off intermittency
,”
Phys. Lett. A
188
,
39
47
(
1994
).
173.
Y.
Zhang
,
Z. G.
Nicolaou
,
J. D.
Hart
,
R.
Roy
, and
A. E.
Motter
, “
Critical switching in globally attractive chimeras
,”
Phys. Rev. X
10
,
011044
(
2020
).
174.
C.
Kuehn
,
G.
Zschaler
, and
T.
Gross
, “
Early warning signs for saddle-escape transitions in complex networks
,”
Sci. Rep.
5
,
13190
(
2015
).
175.
A.
Koseska
,
E.
Volkov
, and
J.
Kurths
, “
Oscillation quenching mechanisms: Amplitude vs oscillation death
,”
Phys. Rep.
531
,
173
199
(
2013
).
176.
W.
Zou
,
D.
Senthilkumar
,
M.
Zhan
, and
J.
Kurths
, “
Quenching, aging, and reviving in coupled dynamical networks
,”
Phys. Rep.
931
,
1
72
(
2021
).
177.
S.
Boccaletti
,
J.
Almendral
,
S.
Guan
,
I.
Leyva
,
Z.
Liu
,
I.
Sendiña-Nadal
,
Z.
Wang
, and
Y.
Zou
, “
Explosive transitions in complex networks’ structure and dynamics: Percolation and synchronization
,”
Phys. Rep.
660
,
1
94
(
2016
).
178.
C.
Kuehn
and
C.
Bick
, “
A universal route to explosive phenomena
,”
Sci. Adv.
7
,
eabe3824
(
2021
).
179.
F.
Mormann
,
R.
Andrzejak
,
T.
Kreuz
,
C.
Rieke
,
P.
David
,
C. E.
Elger
, and
K.
Lehnertz
, “
Automated detection of a preseizure state based on a decrease in synchronization in intracranial electroencephalogram recordings from epilepsy patients
,”
Phys. Rev. E
67
,
021912
(
2003
).
180.
F.
Mormann
,
T.
Kreuz
,
C.
Rieke
,
R. G.
Andrzejak
,
A.
Kraskov
,
P.
David
,
C. E.
Elger
, and
K.
Lehnertz
, “
On the predictability of epileptic seizures
,”
Clin. Neurophysiol.
116
,
569
587
(
2005
).
181.
M.
Winterhalder
,
B.
Schelter
,
T.
Maiwald
,
A.
Brandt
,
A.
Schad
,
A.
Schulze-Bonhage
, and
J.
Timmer
, “
Spatio-temporal patient-individual assessment of synchronization changes for epileptic seizure prediction
,”
Clin. Neurophysiol.
117
,
2399
2413
(
2006
).
182.
L.
Kuhlmann
,
D.
Freestone
,
A. L.
Lai
,
A. N.
Burkitt
,
K.
Fuller
,
D.
Grayden
,
L.
Seiderer
,
S.
Vogrin
,
I. M. Y.
Mareels
, and
M. J.
Cook
, “
Patient-specific bivariate-synchrony-based seizure prediction for short prediction horizons
,”
Epilepsy. Res.
91
,
214
231
(
2010
).
183.
A.
Ray
, “
Symbolic dynamic analysis of complex systems for anomaly detection
,”
Signal Process.
84
,
1115
1130
(
2004
).
184.
S. C.
Chin
,
A.
Ray
, and
V.
Rajagopalan
, “
Symbolic time series analysis for anomaly detection: A comparative evaluation
,”
Signal Process.
85
,
1859
1868
(
2005
).
185.
K.
Lehnertz
and
H.
Dickten
, “
Assessing directionality and strength of coupling through symbolic analysis: An application to epilepsy patients
,”
Phil. Trans. R. Soc. A
373
,
20140094
(
2015
).
186.
R.
Liu
,
P.
Chen
,
K.
Aihara
, and
L.
Chen
, “
Identifying early-warning signals of critical transitions with strong noise by dynamical network markers
,”
Sci. Rep.
5
,
17501
(
2015
).
187.
X.
Peng
,
M.
Small
,
Y.
Zhao
, and
J. M.
Moore
, “
Detecting and predicting tipping points
,”
Int. J. Bifurcation Chaos
29
,
1930022
(
2019
).
188.
T.
Rings
,
M.
Mazarei
,
A.
Akhshi
,
C.
Geier
,
M. R. R.
Tabar
, and
K.
Lehnertz
, “
Traceability and dynamical resistance of precursor of extreme events
,”
Sci. Rep.
9
,
1744
(
2019
).
189.
T.
Rings
,
R.
von Wrede
, and
K.
Lehnertz
, “
Precursors of seizures due to specific spatial-temporal modifications of evolving large-scale epileptic brain networks
,”
Sci. Rep.
9
,
10623
(
2019
).
190.
J.
Ludescher
,
M.
Martin
,
N.
Boers
,
A.
Bunde
,
C.
Ciemer
,
J.
Fan
,
S.
Havlin
,
M.
Kretschmer
,
J.
Kurths
,
J.
Runge
et al., “
Network-based forecasting of climate phenomena
,”
Proc. Natl. Acad. Sci. U. S. A.
118
,
e1922872118
(
2021
).
191.
K.
Mittal
and
S.
Gupta
, “
Topological characterization and early detection of bifurcations and chaos in complex systems using persistent homology
,”
Chaos
27
,
051102
(
2017
).
192.
S. M. S.
Syed Musa
,
M. S.
Md Noorani
,
F.
Abdul Razak
,
M.
Ismail
,
M. A.
Alias
, and
S. I.
Hussain
, “
Using persistent homology as preprocessing of early warning signals for critical transition in flood
,”
Sci. Rep.
11
,
7234
(
2021
).
193.
M.
Ghil
and
D.
Sciamarella
, “
Dynamical systems, algebraic topology and the climate sciences
,”
Nonlin. Proc. Geophys.
30
,
399
434
(
2023
).
194.
R.
Giacomini
and
B.
Rossi
, “
Detecting and predicting forecast breakdowns
,”
Rev. Econ. Stud.
76
,
669
705
(
2009
).
195.
P. F.
Ghalati
,
S. S.
Samal
,
J. S.
Bhat
,
R.
Deisz
,
G.
Marx
, and
A.
Schuppert
, “
Critical transitions in intensive care units: A sepsis case study
,”
Sci. Rep.
9
,
12888
(
2019
).
196.
R.
Liu
,
M.
Li
,
Z.-P.
Liu
,
J.
Wu
,
L.
Chen
, and
K.
Aihara
, “
Identifying critical transitions and their leading biomolecular networks in complex diseases
,”
Sci. Rep.
2
,
813
(
2012
).
197.
J.
Meng
,
J.
Fan
,
J.
Ludescher
,
A.
Agarwal
,
X.
Chen
,
A.
Bunde
,
J.
Kurths
, and
H. J.
Schellnhuber
, “
Complexity-based approach for El Niño magnitude forecasting before the spring predictability barrier
,”
Proc. Nat. Acad. Sci. U. S. A.
117
,
177
183
(
2020
).
198.
I.
Pavithran
,
V. R.
Unni
, and
R.
Sujith
, “
Critical transitions and their early warning signals in thermoacoustic systems
,”
Eur. Phys. J. Spec. Top.
230
,
3411
3432
(
2021
).
199.
G.
Tirabassi
and
C.
Masoller
, “
Entropy-based early detection of critical transitions in spatial vegetation fields
,”
Proc. Natl. Acad. Sci. U. S. A.
120
,
e2215667120
(
2023
).
200.
S.
Deb
and
P. S.
Dutta
, “
Critical transitions in spatial systems induced by Ornstein–Uhlenbeck noise: Spatial mutual information as a precursor
,”
Proc. R. Soc. A Math., Phys. Eng. Sci.
480
,
20230594
(
2024
).
201.
E.
Barter
,
A.
Brechtel
,
B.
Drossel
, and
T.
Gross
, “
A closed form for Jacobian reconstruction from time series and its application as an early warning signal in network dynamics
,”
Proc. Roy. Soc. A
477
,
20200742
(
2021
).
202.
C. L.
Franzke
, “
Predictions of critical transitions with non-stationary reduced order models
,”
Phys. D
262
,
35
47
(
2013
).
203.
F.
Kwasniok
, “
Predicting critical transitions in dynamical systems from time series using nonstationary probability density modeling
,”
Phys. Rev. E
88
,
052917
(
2013
).
204.
F.
Kwasniok
, “
Forecasting critical transitions using data-driven nonstationary dynamical modeling
,”
Phys. Rev. E
92
,
062928
(
2015
).
205.
F.
Kwasniok
, “
Detecting, anticipating, and predicting critical transitions in spatially extended systems
,”
Chaos
28
,
033614
(
2018
).
206.
A.
Din
,
J.
Liang
, and
T.
Zhou
, “
Detecting critical transitions in the case of moderate or strong noise by binomial moments
,”
Phys. Rev. E
98
,
012114
(
2018
).
207.
K.
Lehnertz
,
L.
Zabawa
, and
M. R. R.
Tabar
, “
Characterizing abrupt transitions in stochastic dynamics
,”
New J. Phys.
20
,
113043
(
2018
).
208.
B. M.
Arani
,
S. R.
Carpenter
,
L.
Lahti
,
E. H.
Van Nes
, and
M.
Scheffer
, “
Exit time as a measure of ecological resilience
,”
Science
372
,
eaay4895
(
2021
).
209.
M.
Heßler
and
O.
Kamps
, “
Bayesian on-line anticipation of critical transitions
,”
New J. Phys.
24
,
063021
(
2022
).
210.
M.
Heßler
and
O.
Kamps
, “
Quantifying resilience and the risk of regime shifts under strong correlated noise
,”
PNAS Nexus
2
,
pgac296
(
2023
).
211.
S. H.
Lim
,
L.
Theo Giorgini
,
W.
Moon
, and
J. S.
Wettlaufer
, “
Predicting critical transitions in multiscale dynamical systems using reservoir computing
,”
Chaos
30
,
123126
(
2020
).
212.
L.-W.
Kong
,
H.-W.
Fan
,
C.
Grebogi
, and
Y.-C.
Lai
, “
Machine learning prediction of critical transition and system collapse
,”
Phys. Rev. Res.
3
,
013090
(
2021
).
213.
A.
Ray
,
T.
Chakraborty
, and
D.
Ghosh
, “
Optimized ensemble deep learning framework for scalable forecasting of dynamics containing extreme events
,”
Chaos
31
,
111105
(
2021
).
214.
D.
Patel
,
D.
Canaday
,
M.
Girvan
,
A.
Pomerance
, and
E.
Ott
, “
Using machine learning to predict statistical properties of non-stationary dynamical processes: System climate, regime transitions, and the effect of stochasticity
,”
Chaos
31
,
033149
(
2021
).
215.
D.
Patel
and
E.
Ott
, “
Using machine learning to anticipate tipping points and extrapolate to post-tipping dynamics of non-stationary dynamical systems
,”
Chaos
33
,
023143
(
2023
).
216.
D.
Köglmayr
and
C.
Räth
, “
Extrapolating tipping points and simulating non-stationary dynamics of complex systems using efficient machine learning
,”
Sci. Rep.
14
,
507
(
2024
).
217.
R.
Shcherbakov
,
J.
Zhuang
,
G.
Zöller
, and
Y.
Ogata
, “
Forecasting the magnitude of the largest expected earthquake
,”
Nat. Commun.
10
,
4051
(
2019
).
218.
K.
Lehnertz
and
C. E.
Elger
, “
Can epileptic seizures be predicted? Evidence from nonlinear time series analysis of brain electrical activity
,”
Phys. Rev. Lett.
80
,
5019
5023
(
1998
).
219.
R.
Streeter
and
A. J.
Dugmore
, “
Anticipating land surface change
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
5779
5784
(
2013
).
220.
S.
Bialonski
,
G.
Ansmann
, and
H.
Kantz
, “
Data-driven prediction and prevention of extreme events in a spatially extended excitable system
,”
Phys. Rev. E
92
,
042910
(
2015
).
221.
F.
Grziwotz
,
C.-W.
Chang
,
V.
Dakos
,
E. H.
van Nes
,
M.
Schwarzländer
,
O.
Kamps
,
M.
Heßler
,
I. T.
Tokuda
,
A.
Telschow
, and
C.-H.
Hsieh
, “
Anticipating the occurrence and type of critical transitions
,”
Sci. Adv.
9
,
eabq4558
(
2023
).
222.
D. J.
Benjamin
,
J. O.
Berger
,
M.
Johannesson
,
B. A.
Nosek
,
E.-J.
Wagenmakers
,
R.
Berk
,
K. A.
Bollen
,
B.
Brembs
,
L.
Brown
,
C.
Camerer
et al., “
Redefine statistical significance
,”
Nat. Hum. Behav.
2
,
6
10
(
2018
).
223.
K.
Lehnertz
,
T.
Rings
, and
T.
Bröhl
, “
Time in brain: How biological rhythms impact on EEG signals and on EEG-derived brain networks
,”
Front. Netw. Physiol.
1
,
755016
(
2021
).
224.
R.
Dahlhaus
and
M. H.
Neumann
, “
Locally adaptive fitting of semiparametric models to nonstationary time series
,”
Stoch. Process. Their Appl.
91
,
277
308
(
2001
).
225.
E.
Carlstein
, “
Nonparametric change-point estimation
,”
Ann. Stat.
16
,
188
197
(
1988
).
226.
M.
Basseville
and
I. V.
Nikiforov
,
Detection of Abrupt Changes: Theory and Application
(
Prentice Hall
,
Englewood Cliffs, NJ
,
1993
), Vol. 104.
227.
S.
Aminikhanghahi
and
D. J.
Cook
, “
A survey of methods for time series change point detection
,”
Knowl. Inf. Syst.
51
,
339
367
(
2017
).
228.
J.
Cabrieto
,
F.
Tuerlinckx
,
P.
Kuppens
,
M.
Grassmann
, and
E.
Ceulemans
, “
Detecting correlation changes in multivariate time series: A comparison of four non-parametric change point detection methods
,”
Behav. Res. Methods
49
,
988
1005
(
2017
).
229.
J.
Cabrieto
,
F.
Tuerlinckx
,
P.
Kuppens
,
B.
Hunyadi
, and
E.
Ceulemans
, “
Testing for the presence of correlation changes in a multivariate time series: A permutation based approach
,”
Sci. Rep.
8
,
769
(
2018
).
230.
C.
Truong
,
L.
Oudre
, and
N.
Vayatis
, “
Selective review of offline change point detection methods
,”
Signal Process.
167
,
107299
(
2020
).
231.
W.
Bagniewski
and
M.
Ghil
, “
Automatic detection of abrupt transitions in paleoclimate records
,”
Chaos
31
,
113129
(
2021
).
232.
T. M.
Bury
,
R.
Sujith
,
I.
Pavithran
,
M.
Scheffer
,
T. M.
Lenton
,
M.
Anand
, and
C. T.
Bauch
, “
Deep learning for early warning signals of tipping points
,”
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2106140118
(
2021
).
233.
L. J.
Gilarranz
,
A.
Narwani
,
D.
Odermatt
,
R.
Siber
, and
V.
Dakos
, “
Regime shifts, trends, and variability of lake productivity at a global scale
,”
Proc. Natl. Acad. Sci. U. S. A.
119
,
e2116413119
(
2022
).
234.
T.
De Ryck
,
M.
De Vos
, and
A.
Bertrand
, “
Change point detection in time series data using autoencoders with a time-invariant representation
,”
IEEE Trans. Sig. Proc.
69
,
3513
3524
(
2021
).
235.
C.
Boettiger
and
A.
Hastings
, “
Quantifying limits to detection of early warning for critical transitions
,”
J. Roy. Soc. Interface
9
,
2527
2539
(
2012
).
236.
A.
Bunde
,
J.
Ludescher
, and
H. J.
Schellnhuber
, “
How to determine the statistical significance of trends in seasonal records: Application to Antarctic temperatures
,”
Clim. Dyn.
58
,
1349
1361
(
2022
).
237.
W. W.
Daniel
,
Applied Nonparametric Statistics
, revised ed. (
Duxbury
,
Pacific Grove, CA
,
2000
).
238.
A.
Kolmogorov
, “
Sulla determinazione empirica di una legge didistribuzione
,”
Giorn Dell’inst Ital Degli Att
4
,
89
91
(
1933
).
239.
H. B.
Mann
and
D. R.
Whitney
, “
On a test of whether one of two random variables is stochastically larger than the other
,”
Ann. Math. Stat.
18
,
50
60
(
1947
).
240.
J.
Yerushalmy
, “
Statistical problems in assessing methods of medical diagnosis, with special reference to x-ray techniques
,”
Public Health Rep.
62
,
1432
1449
(
1947
).
241.
T.
Fawcett
, “
An introduction to ROC analysis
,”
Pattern Recogn. Lett.
27
,
861
874
(
2006
).
242.
J. P.
Egan
,
Signal Detection Theory and ROC-Analysis
(
Academic Press
,
Cambridge, MA
,
1975
).
243.
J. M.
Drake
, “
Early warning signals of stochastic switching
,”
Proc. Roy. Soc. B Biological Sci.
280
,
20130686
(
2013
).
244.
B. H.
Brinkmann
,
J.
Wagenaar
,
D.
Abbot
,
P.
Adkins
,
S. C.
Bosshard
,
M.
Chen
,
Q. M.
Tieng
,
J.
He
,
F. J.
Muñoz-Almaraz
,
P.
Botella-Rocamora
,
J.
Pardo
,
F.
Zamora-Martinez
,
M.
Hills
,
W.
Wu
,
I.
Korshunova
,
W.
Cukierski
,
C.
Vite
,
E. E.
Patterson
,
B.
Litt
, and
G. A.
Worrell
, “
Crowdsourcing reproducible seizure forecasting in human and canine epilepsy
,”
Brain
139
,
1713
1722
(
2016
).
245.
M.
Cavaliere
,
G.
Yang
,
V.
Danos
, and
V.
Dakos
, “
Detecting the collapse of cooperation in evolving networks
,”
Sci. Rep.
6
,
30845
(
2016
).
246.
L.
Kuhlmann
,
P.
Karoly
,
D. R.
Freestone
,
B. H.
Brinkmann
,
A.
Temko
,
A.
Barachant
,
F.
Li
,
G.
Titericz
, Jr.
,
B. W.
Lang
,
D.
Lavery
et al., “
Epilepsyecosystem.org: Crowd-sourcing reproducible seizure prediction with long-term human intracranial EEG
,”
Brain
141
,
2619
2630
(
2018
).
247.
B.
Yang
,
M.
Li
,
W.
Tang
,
W.
Liu
,
S.
Zhang
,
L.
Chen
, and
J.
Xia
, “
Dynamic network biomarker indicates pulmonary metastasis at the tipping point of hepatocellular carcinoma
,”
Nat. Commun.
9
,
678
(
2018
).
248.
T.
Brett
,
M.
Ajelli
,
Q.-H.
Liu
,
M. G.
Krauland
,
J. J.
Grefenstette
,
W. G.
van Panhuis
,
A.
Vespignani
,
J. M.
Drake
, and
P.
Rohani
, “
Detecting critical slowing down in high-dimensional epidemiological systems
,”
PLoS Comput. Biol.
16
,
e1007679
(
2020
).
249.
A. T.
Tredennick
,
E. B.
O’Dea
,
M. J.
Ferrari
,
A. W.
Park
,
P.
Rohani
, and
J. M.
Drake
, “
Anticipating infectious disease re-emergence and elimination: A test of early warning signals using empirically based models
,”
J. Roy. Soc. Interface
19
,
20220123
(
2022
).
250.
D.
Dylewsky
,
T. M.
Lenton
,
M.
Scheffer
,
T. M.
Bury
,
C. G.
Fletcher
,
M.
Anand
, and
C. T.
Bauch
, “
Universal early warning signals of phase transitions in climate systems
,”
J. Roy. Soc. Interface
20
,
20220562
(
2023
).
251.
L.
Gómez-Nava
,
R. T.
Lange
,
P. P.
Klamser
,
J.
Lukas
,
L.
Arias-Rodriguez
,
D.
Bierbach
,
J.
Krause
,
H.
Sprekeler
, and
P.
Romanczuk
, “
Fish shoals resemble a stochastic excitable system driven by environmental perturbations
,”
Nat. Phys.
19
,
663
669
(
2023
).
252.
G. M.
Weiss
, “
Mining with rarity: A unifying framework
,”
ACM Sigkdd Explorations Newslett.
6
,
7
19
(
2004
).
253.
Z.
Ben Bouallègue
and
D. S.
Richardson
, “
On the ROC area of ensemble forecasts for rare events
,”
Weather Forecast.
37
,
787
796
(
2022
).
254.
J.
West
,
Z. D.
Bozorgi
,
J.
Herron
,
H. J.
Chizeck
,
J. D.
Chambers
, and
L.
Li
, “
Machine learning seizure prediction: One problematic but accepted practice
,”
J. Neural Eng.
20
,
016008
(
2023
).
255.
F.
Mormann
,
R.
Andrzejak
,
C. E.
Elger
, and
K.
Lehnertz
, “
Seizure prediction: The long and winding road
,”
Brain
130
,
314
333
(
2007
).
256.
L.
Kuhlmann
,
K.
Lehnertz
,
M. P.
Richardson
,
B.
Schelter
, and
H. P.
Zaveri
, “
Seizure prediction – ready for a new era
,”
Nat. Rev. Neurol.
14
,
618
630
(
2018
).
257.
M.
Winterhalder
,
T.
Maiwald
,
H. U.
Voss
,
R.
Aschenbrenner-Scheibe
,
J.
Timmer
, and
A.
Schulze-Bonhage
, “
The seizure prediction characteristic: A general framework to assess and compare seizure prediction methods
,”
Epilepsy Behav.
3
,
318
325
(
2003
).
258.
B.
Schelter
,
M.
Winterhalder
,
T.
Maiwald
,
A.
Brandt
,
A.
Schad
,
A.
Schulze-Bonhage
, and
J.
Timmer
, “
Testing statistical significance of multivariate time series analysis techniques for epileptic seizure prediction
,”
Chaos
16
,
013108
(
2006
).
259.
H.
Feldwisch-Drentrup
,
M.
Staniek
,
A.
Schulze-Bonhage
,
J.
Timmer
,
H.
Dickten
,
C. E.
Elger
,
B.
Schelter
, and
K.
Lehnertz
, “
Identification of preseizure states in epilepsy: A data-driven approach for multichannel EEG recordings
,”
Front. Comput. Neurosci.
5
,
32
(
2011
).
260.
M.
Mader
,
W.
Mader
,
B. J.
Gluckman
,
J.
Timmer
, and
B.
Schelter
, “
Statistical evaluation of forecasts
,”
Phys. Rev. E
90
,
022133
(
2014
).
261.
B.
Efron
,
The Jackknife, the Bootstrap and Other Resampling Plans
(
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
,
1982
).
262.
B.
Efron
and
R. J.
Tibshirani
,
An Introduction to the Bootstrap
(
Chapman & Hall
,
Boca Raton
,
1998
), p.
436
.
263.
T.
Schreiber
and
A.
Schmitz
, “
Surrogate time series
,”
Physica D
142
,
346
382
(
2000
).
264.
J.
Lucio
,
R.
Valdés
, and
L.
Rodríguez
, “
Improvements to surrogate data methods for nonstationary time series
,”
Phys. Rev. E
85
,
056202
(
2012
).
265.
G.
Lancaster
,
D.
Iatsenko
,
A.
Pidde
,
V.
Ticcinelli
, and
A.
Stefanovska
, “
Surrogate data for hypothesis testing of physical systems
,”
Phys. Rep.
748
,
1
60
(
2018
).
266.
G.
Ansmann
and
K.
Lehnertz
, “
Constrained randomization of weighted networks
,”
Phys. Rev. E
84
,
026103
(
2011
).
267.
G.
Ansmann
and
K.
Lehnertz
, “
Surrogate-assisted analysis of weighted functional brain networks
,”
J. Neurosci. Methods
208
,
165
172
(
2012
).
268.
S.
Bialonski
, “Inferring complex networks from time series of dynamical systems: Pitfalls, misinterpretations, and possible solutions,” arXiv 1208.0800 (2012).
269.
I.
Laut
and
C.
Räth
, “
Surrogate-assisted network analysis of nonlinear time series
,”
Chaos
26
,
103108
(
2016
).
270.
M.
Wiedermann
,
J. F.
Donges
,
J.
Kurths
, and
R. V.
Donner
, “
Spatial network surrogates for disentangling complex system structure from spatial embedding of nodes
,”
Phys. Rev. E
93
,
042308
(
2016
).
271.
K.
Stahn
and
K.
Lehnertz
, “
Surrogate-assisted identification of influences of network construction on evolving weighted functional networks
,”
Chaos
27
,
123106
(
2017
).
272.
D.
Chorozoglou
and
D.
Kugiumtzis
, “
Testing the randomness of correlation networks from multivariate time series
,”
J. Complex Netw.
7
,
190
209
(
2019
).
273.
R. G.
Andrzejak
,
F.
Mormann
,
T.
Kreuz
,
C.
Rieke
,
A.
Kraskov
,
C. E.
Elger
, and
K.
Lehnertz
, “
Testing the null hypothesis of the nonexistence of a preseizure state
,”
Phys. Rev. E
67
,
010901(R)
(
2003
).
274.
T.
Kreuz
,
R. G.
Andrzejak
,
F.
Mormann
,
A.
Kraskov
,
H.
Stögbauer
,
C. E.
Elger
,
K.
Lehnertz
, and
P.
Grassberger
, “
Measure profile surrogates: A method to validate the performance of epileptic seizure prediction algorithms
,”
Phys. Rev. E
69
,
061915
(
2004
).
275.
D.
Bertsimas
and
J.
Tsitsiklis
, “
Simulated annealing
,”
Stat. Sci.
8
,
10
15
(
1993
).
276.
M. A.
Kramer
,
W.
Truccolo
,
U. T.
Eden
,
K. Q.
Lepage
,
L. R.
Hochberg
,
E. N.
Eskandar
,
J. R.
Madsen
,
J. W.
Lee
,
A.
Maheshwari
,
E.
Halgren
,
C. J.
Chu
, and
S. S.
Cash
, “
Human seizures self-terminate across spatial scales via a critical transition
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
21116
21121
(
2012
).
277.
C.
Boettner
and
N.
Boers
, “
Critical slowing down in dynamical systems driven by nonstationary correlated noise
,”
Phys. Rev. Res.
4
,
013230
(
2022
).
278.
S.
Chen
,
A.
Ghadami
, and
B. I.
Epureanu
, “
Practical guide to using Kendall’s τ in the context of forecasting critical transitions
,”
Roy. Soc. Open Sci.
9
,
211346
(
2022
).
279.
K.
Pal
,
S.
Deb
, and
P. S.
Dutta
, “
Tipping points in spatial ecosystems driven by short-range correlated noise
,”
Phys. Rev. E
106
,
054412
(
2022
).
280.
N.
Bochow
and
N.
Boers
, “
The South American monsoon approaches a critical transition in response to deforestation
,”
Sci. Adv.
9
,
eadd9973
(
2023
).
281.
G.
Shmueli
, “
To explain or to predict?
,”
Stat. Sci.
25
,
289
310
(
2010
).
282.
M. J.
Cook
,
T. J.
O’Brien
,
S. F.
Berkovic
,
M.
Murphy
,
A.
Morokoff
,
G.
Fabinyi
,
W.
D’Souza
,
R.
Yerra
,
J.
Archer
,
L.
Litewka
,
S.
Hosking
,
P.
Lightfoot
,
V.
Ruedebusch
,
W. D.
Sheffield
,
D.
Snyder
,
K.
Leyde
, and
D.
Himes
, “
Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: A first-in-man study
,”
Lancet Neurol.
12
,
563
571
(
2013
).
283.
J.
Ludescher
,
A.
Bunde
, and
H. J.
Schellnhuber
, “
Forecasting the El Niño type well before the spring predictability barrier
,”
npj Clim. Atmos. Sci.
6
,
196
(
2023
).
284.
T.
Gneiting
and
M.
Katzfuss
, “
Probabilistic forecasting
,”
Annu. Rev. Stat. Appl.
1
,
125
151
(
2014
).
285.
L. J.
Tashman
, “
Out-of-sample tests of forecasting accuracy: An analysis and review
,”
Int. J. Forecast.
16
,
437
450
(
2000
).
286.
T.
Gneiting
,
F.
Balabdaoui
, and
A. E.
Raftery
, “
Probabilistic forecasts, calibration and sharpness
,”
J. R. Stat. Soc. B Stat. Methodol.
69
,
243
268
(
2007
).
287.
T.
Gneiting
, “
Making and evaluating point forecasts
,”
J. Am. Stat. Assoc.
106
,
746
762
(
2011
).
288.
S.
Lerch
,
T. L.
Thorarinsdottir
,
F.
Ravazzolo
, and
T.
Gneiting
, “
Forecaster’s dilemma: Extreme events and forecast evaluation
,”
Statist. Sci.
32
,
106
127
(
2017
).
289.
T.
Gneiting
,
D.
Wolffram
,
J.
Resin
,
K.
Kraus
,
J.
Bracher
,
T.
Dimitriadis
,
V.
Hagenmeyer
,
A. I.
Jordan
,
S.
Lerch
,
K.
Phipps
, and
M.
Schienle
, “
Model diagnostics and forecast evaluation for quantiles
,”
Annu. Rev. Stat. Appl.
10
,
597
621
(
2023
).
290.
J. O.
Berger
and
L. A.
Smith
, “
On the statistical formalism of uncertainty quantification
,”
Annu. Rev. Stat. Appl.
6
,
433
460
(
2019
).
You do not currently have access to this content.