Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 15, 2021

Physical exercise promotes brain remodeling by regulating epigenetics, neuroplasticity and neurotrophins

  • Juan Liang , Huiqing Wang , Yan Zeng , Yi Qu , Qian Liu , Fengyan Zhao , Jianan Duan , Yin Jiang , Shiping Li , Junjie Ying , Jinhui Li EMAIL logo and Dezhi Mu EMAIL logo

Abstract

Exercise has been shown to have beneficial effects on brain functions in humans and animals. Exercise can improve memory and learning in age-related neurodegenerative diseases. In animal models, physical exercise regulates epigenetics, promotes synaptic plasticity and hippocampal neurogenesis, regulates the expression levels of neurotrophic factors, and improves cognitive function. Therefore, exercise is very important for brain rehabilitation and remodeling. The purpose of this review is to explore the mechanisms by which exercise exerts positive effects on brain function. This knowledge implies that physical exercise can be used as a non-drug therapy for neurological diseases.


Corresponding authors: Jinhui Li and Dezhi Mu, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; and Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China, E-mail: ,
Juan Liang and Huiqing Wang contributed equally to this review.

Funding source: The grants from the Ministry of Education of China

Award Identifier / Grant number: IRT0935

Funding source: The National Key R&D Program of China

Award Identifier / Grant number: 2017YFA 0104200

Funding source: The Fundamental Research Funds for the Central Universities

Funding source: The grants from the Science and Technology Bureau of Sichuan Province

Award Identifier / Grant number: 2016TD0002

Funding source: The grant from the clinical discipline program (Neonatology) from the Ministry of Health of China

Award Identifier / Grant number: 1311200003303

Award Identifier / Grant number: 81630038

Award Identifier / Grant number: 81971433

Award Identifier / Grant number: 81971428

Award Identifier / Grant number: 81771634

Award Identifier / Grant number: 81842011

Award Identifier / Grant number: 81330016

Award Identifier / Grant number: 81801629

Funding source: Ministry of Education of the People’s Republic of China

Funding source: Ministry of Health of China

Award Identifier / Grant number: 1311200003303

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Our work was supported by the National Science Foundation of China (81630038, 81971433, 81971428, 81771634, 81842011, 81330016, 81801629), the National Key R&D Program of China (2017YFA 0104200), the grants from the Ministry of Education of China (IRT0935), the grants from the Science and Technology Bureau of Sichuan Province (2016TD0002), the grant from the clinical discipline program (Neonatology) from the Ministry of Health of China (1311200003303), and the Fundamental Research Funds for the Central Universities.

  3. Conflict of interest statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

Abbott, L.C. and Nigussie, F. (2020). Adult neurogenesis in the mammalian dentate gyrus. Anat. Histol. Embryol. 49: 3–16, https://doi.org/10.1111/ahe.12496.Search in Google Scholar PubMed

Abou-Samra, M., Selvais, C.M., Dubuisson, N., and Brichard, S.M. (2020). Adiponectin and its mimics on skeletal muscle: insulin sensitizers, fat burners, exercise mimickers, muscling pills … or everything together? Int. J. Mol. Sci. 21: 2620, https://doi.org/10.3390/ijms21072620.Search in Google Scholar PubMed PubMed Central

Ahn, J.H., Choi, J.H., Park, J.H., Kim, I.H., Cho, J.H., Lee, J.C., Koo, H.M., Hwangbo, G., Yoo, K.Y., Lee, C.H., et al.. (2016). Long-term exercise improves memory deficits via restoration of myelin and microvessel damage, and enhancement of neurogenesis in the aged gerbil hippocampus after ischemic stroke. Neurorehabil. Neural Repair. 30: 894–905, https://doi.org/10.1177/1545968316638444.Search in Google Scholar PubMed

Ali, I., Conrad, R.J., Verdin, E., and Ott, M. (2018). Lysine acetylation goes global: from epigenetics to metabolism and therapeutics. Chem. Rev. 118: 1216–1252, https://doi.org/10.1021/acs.chemrev.7b00181.Search in Google Scholar PubMed PubMed Central

Altman, J. (1962). Are new neurons formed in the brains of adult mammals? Science 135: 1127–1128, https://doi.org/10.1126/science.135.3509.1127.Search in Google Scholar PubMed

Altman, J. and Das, G.D. (1965). Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J. Comp. Neurol. 124: 319–335, https://doi.org/10.1002/cne.901240303.Search in Google Scholar PubMed

Amtul, Z. and Atta Ur, R. (2015). Neural plasticity and memory: molecular mechanism. Rev. Neurosci. 26: 253–268, https://doi.org/10.1515/revneuro-2014-0075.Search in Google Scholar PubMed

Anderson, K.D., Alderson, R.F., Altar, C.A., DiStefano, P.S., Corcoran, T.L., Lindsay, R.M., and Wiegand, S.J. (1995). Differential distribution of exogenous BDNF, NGF, and NT-3 in the brain corresponds to the relative abundance and distribution of high-affinity and low-affinity neurotrophin receptors. J. Comp. Neurol. 357: 296–317, https://doi.org/10.1002/cne.903570209.Search in Google Scholar PubMed

Aronen, H.J., Pardo, F.S., Kennedy, D.N., Belliveau, J.W., Packard, S.D., Hsu, D.W., Hochberg, F.H., Fischman, A.J., and Rosen, B.R. (2000). High microvascular blood volume is associated with high glucose uptake and tumor angiogenesis in human gliomas. Clin. Cancer Res. 6: 2189–2200.Search in Google Scholar

Ascoli, G.A. (2006). Mobilizing the base of neuroscience data: the case of neuronal morphologies. Nat. Rev. Neurosci. 7: 318–324, https://doi.org/10.1038/nrn1885.Search in Google Scholar PubMed

Ashpole, N.M., Sanders, J.E., Hodges, E.L., Yan, H., and Sonntag, W.E. (2015). Growth hormone, insulin-like growth factor-1 and the aging brain. Exp. Gerontol. 68: 76–81, https://doi.org/10.1016/j.exger.2014.10.002.Search in Google Scholar PubMed PubMed Central

Babri, S., Amani, M., Mohaddes, G., Alihemmati, A., and Ebrahimi, H. (2012). Effect of aggregated β-amyloid (1-42) on synaptic plasticity of hippocampal dentate gyrus granule cells in vivo. BioImpacts BI 2: 189–194, https://doi.org/10.5681/bi.2012.022.Search in Google Scholar PubMed PubMed Central

Baron-Van Evercooren, A., Olichon-Berthe, C., Kowalski, A., Visciano, G., and Van Obberghen, E. (1991). Expression of IGF-I and insulin receptor genes in the rat central nervous system: a developmental, regional, and cellular analysis. J. Neurosci. Res. 28: 244–253, https://doi.org/10.1002/jnr.490280212.Search in Google Scholar PubMed

Bilang-Bleuel, A., Ulbricht, S., Chandramohan, Y., De Carli, S., Droste, S.K., and Reul, J.M. (2005). Psychological stress increases histone H3 phosphorylation in adult dentate gyrus granule neurons: involvement in a glucocorticoid receptor-dependent behavioural response. Eur. J. Neurosci. 22: 1691–1700, https://doi.org/10.1111/j.1460-9568.2005.04358.x.Search in Google Scholar PubMed

Binnewijzend, M.A., Kuijer, J.P., Benedictus, M.R., van der Flier, W.M., Wink, A.M., Wattjes, M.P., van Berckel, B.N., Scheltens, P., and Barkhof, F. (2013). Cerebral blood flow measured with 3D pseudocontinuous arterial spin-labeling MR imaging in Alzheimer disease and mild cognitive impairment: a marker for disease severity. Radiology 267: 221–230, https://doi.org/10.1148/radiol.12120928.Search in Google Scholar PubMed

Bizon, J.L., Lee, H.J., and Gallagher, M. (2004). Neurogenesis in a rat model of age-related cognitive decline. Aging Cell 3: 227–234, https://doi.org/10.1111/j.1474-9728.2004.00099.x.Search in Google Scholar PubMed

Boldrini, M., Fulmore, C.A., Tartt, A.N., Simeon, L.R., Pavlova, I., Poposka, V., Rosoklija, G.B., Stankov, A., Arango, V., Dwork, A.J., et al.. (2018). Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell 22: 589–599, e585, https://doi.org/10.1016/j.stem.2018.03.015.Search in Google Scholar PubMed PubMed Central

Bond, A.M., Ming, G.-L., and Song, H. (2015). Adult mammalian neural stem cells and neurogenesis: five decades later. Cell Stem Cell 17: 385–395, https://doi.org/10.1016/j.stem.2015.09.003.Search in Google Scholar PubMed PubMed Central

Bostrom, P., Wu, J., Jedrychowski, M.P., Korde, A., Ye, L., Lo, J.C., Rasbach, K.A., Bostrom, E.A., Choi, J.H., Long, J.Z., et al.. (2012). A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481: 463–468, https://doi.org/10.1038/nature10777.Search in Google Scholar PubMed PubMed Central

Bozelos, P., Stefanou, S.S., Bouloukakis, G., Melachrinos, C., and Poirazi, P. (2016). REMOD: a tool for analyzing and remodeling the dendritic architecture of neural cells. Front. Neuroanat. 9: 156, https://doi.org/10.3389/fnana.2015.00156.Search in Google Scholar PubMed PubMed Central

Burggren, W. (2016). Epigenetic evaluation and new perspectives inheritance and its role in evolutionary biology: re-evaluation and new perspectives. Biology 5: 24, https://doi.org/10.3390/biology5020024.Search in Google Scholar PubMed PubMed Central

Carmeliet, P. (2005). VEGF as a key mediator of angiogenesis in cancer. Oncology 69(Suppl. 3): 4–10, https://doi.org/10.1159/000088478.Search in Google Scholar

Cass, S.P. (2017). Alzheimer’s disease and exercise: a literature review. Curr. Sports Med. Rep. 16: 19–22, https://doi.org/10.1249/jsr.0000000000000332.Search in Google Scholar

Cassilhas, R.C., Tufik, S., and de Mello, M.T. (2016). Physical exercise, neuroplasticity, spatial learning and memory. Cell. Mol. Life Sci. 73: 975–983, https://doi.org/10.1007/s00018-015-2102-0.Search in Google Scholar

Chandramohan, Y., Droste, S.K., Arthur, J.S., and Reul, J.M. (2008). The forced swimming-induced behavioural immobility response involves histone H3 phospho-acetylation and c-Fos induction in dentate gyrus granule neurons via activation of the N-methyl-D-aspartate/extracellular signal-regulated kinase/mitogen- and stress-activated kinase signalling pathway. Eur. J. Neurosci. 27: 2701–2713, https://doi.org/10.1111/j.1460-9568.2008.06230.x.Search in Google Scholar

Chen, W.G., Chang, Q., Lin, Y., Meissner, A., West, A.E., Griffith, E.C., Jaenisch, R., and Greenberg, M.E. (2003). Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 302: 885–889, https://doi.org/10.1126/science.1086446.Search in Google Scholar

Cheng, X.R., Cui, X.L., Zheng, Y., Zhang, G.R., Li, P., Huang, H., Zhao, Y.Y., Bo, X.C., Wang, S.Q., Zhou, W.X., et al.. (2013). Nodes and biological processes identified on the basis of network analysis in the brain of the senescence accelerated mice as an Alzheimer’s disease animal model. Front. Aging Neurosci. 5: 65, https://doi.org/10.3389/fnagi.2013.00065.Search in Google Scholar

Chen, Z., Hu, Q., Xie, Q., Wu, S., Pang, Q., Liu, M., Zhao, Y., Tu, F., Liu, C., and Chen, X. (2019a). Effects of treadmill exercise on motor and cognitive function recovery of MCAO mice through the caveolin-1/VEGF signaling pathway in ischemic penumbra. Neurochem. Res. 44: 930–946, https://doi.org/10.1007/s11064-019-02728-1.Search in Google Scholar

Chen, K., Zheng, Y., Wei, J.-A., Ouyang, H., Huang, X., Zhang, F., Lai, C.S.W., Ren, C., So, K.-F., and Zhang, L. (2019b). Exercise training improves motor skill learning via selective activation of mTOR. Sci. Adv. 5: eaaw1888, https://doi.org/10.1126/sciadv.aaw1888.Search in Google Scholar

Chklovskii, D.B. (2004). Synaptic connectivity and neuronal morphology: two sides of the same coin. Neuron 43: 609–617, https://doi.org/10.1016/s0896-6273(04)00498-2.Search in Google Scholar

Citri, A. and Malenka, R.C. (2008). Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33: 18–41, https://doi.org/10.1038/sj.npp.1301559.Search in Google Scholar PubMed

Collins, A., Hill, L.E., Chandramohan, Y., Whitcomb, D., Droste, S.K., and Reul, J.M. (2009). Exercise improves cognitive responses to psychological stress through enhancement of epigenetic mechanisms and gene expression in the dentate gyrus. PLoS One 4: e4330, https://doi.org/10.1371/journal.pone.0004330.Search in Google Scholar PubMed PubMed Central

Cosin-Tomas, M., Alvarez-Lopez, M.J., Sanchez-Roige, S., Lalanza, J.F., Bayod, S., Sanfeliu, C., Pallas, M., Escorihuela, R.M., and Kaliman, P. (2014). Epigenetic alterations in hippocampus of SAMP8 senescent mice and modulation by voluntary physical exercise. Front. Aging Neurosci. 6: 51, https://doi.org/10.3389/fnagi.2014.00051.Search in Google Scholar PubMed PubMed Central

Cotman, C.W., Berchtold, N.C., and Christie, L.A. (2007). Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 30: 464–472, https://doi.org/10.1016/j.tins.2007.06.011.Search in Google Scholar PubMed

Cramer, S.C., Sur, M., Dobkin, B.H., O’Brien, C., Sanger, T.D., Trojanowski, J.Q., Rumsey, J.M., Hicks, R., Cameron, J., Chen, D., et al.. (2011). Harnessing neuroplasticity for clinical applications. Brain 134: 1591–1609, https://doi.org/10.1093/brain/awr039.Search in Google Scholar PubMed PubMed Central

Dao, A.T., Zagaar, M.A., and Alkadhi, K.A. (2015). Moderate treadmill exercise protects synaptic plasticity of the dentate gyrus and related signaling cascade in a rat model of Alzheimer’s disease. Mol. Neurobiol. 52: 1067–1076, https://doi.org/10.1007/s12035-014-8916-1.Search in Google Scholar PubMed

de Carvalho, F.P., Moretto, T.L., Benfato, I.D., Barthichoto, M., Ferreira, S.M., Costa-Júnior, J.M., and de Oliveira, C.A.M. (2018). Central and peripheral effects of physical exercise without weight reduction in obese and lean mice. Biosci. Rep. 38: BSR20171033, https://doi.org/10.1042/bsr20171033.Search in Google Scholar

De Vincenti, A.P., Ríos, A.S., Paratcha, G., and Ledda, F. (2019). Mechanisms that modulate and diversify BDNF Functions: implications for hippocampal synaptic plasticity. Front. Cell. Neurosci. 13: 135, https://doi.org/10.3389/fncel.2019.00135.Search in Google Scholar PubMed PubMed Central

Deeg, M.A., Bowen, R.F., Williams, M.D., Olson, L.K., Kirk, E.A., and LeBoeuf, R.C. (2001). Increased expression of GPI-specific phospholipase D in mouse models of type 1 diabetes. Am. J. Physiol. Endocrinol. Metab. 281: E147–154, https://doi.org/10.1152/ajpendo.2001.281.1.e147.Search in Google Scholar PubMed

Dell’Osso, L., Carmassi, C., Mucci, F., and Marazziti, D. (2016). Depression, serotonin and tryptophan. Curr. Pharm. Des. 22: 949–954, https://doi.org/10.2174/1381612822666151214104826.Search in Google Scholar PubMed

DeTure, M.A. and Dickson, D.W. (2019). The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener. 14: 32, https://doi.org/10.1186/s13024-019-0333-5.Search in Google Scholar PubMed PubMed Central

Ding, Y.H., Li, J., Zhou, Y., Rafols, J.A., Clark, J.C., and Ding, Y. (2006a). Cerebral angiogenesis and expression of angiogenic factors in aging rats after exercise. Curr. Neurovasc. Res. 3: 15–23, https://doi.org/10.2174/156720206775541787.Search in Google Scholar PubMed

Ding, Q., Vaynman, S., Akhavan, M., Ying, Z., and Gomez-Pinilla, F. (2006b). Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience 140: 823–833, https://doi.org/10.1016/j.neuroscience.2006.02.084.Search in Google Scholar PubMed

Djalali, S., Höltje, M., Grosse, G., Rothe, T., Stroh, T., Grosse, J., Deng, D.R., Hellweg, R., Grantyn, R., Hörtnagl, H., et al.. (2005). Effects of brain-derived neurotrophic factor (BDNF) on glial cells and serotonergic neurones during development. J. Neurochem. 92: 616–627, https://doi.org/10.1111/j.1471-4159.2004.02911.x.Search in Google Scholar PubMed

Dong, J., Liu, Y., Zhan, Z., and Wang, X. (2018). MicroRNA-132 is associated with the cognition improvement following voluntary exercise in SAMP8 mice. Brain Res. Bull. 140: 80–87, https://doi.org/10.1016/j.brainresbull.2018.04.007.Search in Google Scholar PubMed

Dyer, A.H., Vahdatpour, C., Sanfeliu, A., and Tropea, D. (2016). The role of insulin-like growth factor 1 (IGF-1) in brain development, maturation and neuroplasticity. Neuroscience 325: 89–99, https://doi.org/10.1016/j.neuroscience.2016.03.056.Search in Google Scholar PubMed

Eadie, B.D., Redila, V.A., and Christie, B.R. (2005). Voluntary exercise alters the cytoarchitecture of the adult dentate gyrus by increasing cellular proliferation, dendritic complexity, and spine density. J. Comp. Neurol. 486: 39–47, https://doi.org/10.1002/cne.20493.Search in Google Scholar PubMed

El Hayek, L., Khalifeh, M., Zibara, V., and Abi Assaad, R. (2019). Lactate mediates the effects of exercise on learning and memory through SIRT1-dependent activation of hippocampal brain-derived neurotrophic factor (BDNF). J. Neurosci. 39: 2369–2382, https://doi.org/10.1523/JNEUROSCI.1661-18.2019.Search in Google Scholar PubMed PubMed Central

Elsner, V.R., Lovatel, G.A., Bertoldi, K., Vanzella, C., Santos, F.M., Spindler, C., de Almeida, E.F., Nardin, P., and Siqueira, I.R. (2011). Effect of different exercise protocols on histone acetyltransferases and histone deacetylases activities in rat hippocampus. Neuroscience 192: 580–587, https://doi.org/10.1016/j.neuroscience.2011.06.066.Search in Google Scholar PubMed

Eriksson, P.S., Perfilieva, E., Björk-Eriksson, T., Alborn, A.-M., Nordborg, C., Peterson, D.A., and Gage, F.H. (1998). Neurogenesis in the adult human hippocampus. Nat. Med. 4: 1313–1317, https://doi.org/10.1038/3305.Search in Google Scholar PubMed

Fabel, K., Fabel, K., Tam, B., Kaufer, D., Baiker, A., Simmons, N., Kuo, C.J., and Palmer, T.D. (2003). VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur. J. Neurosci. 18: 2803–2812, https://doi.org/10.1111/j.1460-9568.2003.03041.x.Search in Google Scholar PubMed

Farioli-Vecchioli, S., Mattera, A., Micheli, L., Ceccarelli, M., Leonardi, L., Saraulli, D., Costanzi, M., Cestari, V., Rouault, J.P., and Tirone, F. (2014). Running rescues defective adult neurogenesis by shortening the length of the cell cycle of neural stem and progenitor cells. Stem Cells 32: 1968–1982, https://doi.org/10.1002/stem.1679.Search in Google Scholar

Farioli-Vecchioli, S. and Tirone, F. (2015). Control of the cell cycle in adult neurogenesis and its relation with physical exercise. Brain Plast. 1: 41–54, https://doi.org/10.3233/bpl-150013.Search in Google Scholar

Farmer, J., Zhao, X., van Praag, H., Wodtke, K., Gage, F.H., and Christie, B.R. (2004). Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience 124: 71–79, https://doi.org/10.1016/j.neuroscience.2003.09.029.Search in Google Scholar

Fernandes, J., Vieira, A.S., Kramer-Soares, J.C., Da Silva, E.A., Lee, K.S., Lopes-Cendes, I., and Arida, R.M. (2018). Hippocampal microRNA-mRNA regulatory network is affected by physical exercise. Biochim. Biophys. Acta Gen. Subj. 1862: 1711–1720, https://doi.org/10.1016/j.bbagen.2018.05.004.Search in Google Scholar

Forstner, A.J., Hofmann, A., Maaser, A., Sumer, S., Khudayberdiev, S., Mühleisen, T.W., Leber, M., Schulze, T.G., Strohmaier, J., Degenhardt, F., et al.. (2015). Genome-wide analysis implicates microRNAs and their target genes in the development of bipolar disorder. Transl. Psychiatry 5: e678, https://doi.org/10.1038/tp.2015.159.Search in Google Scholar

GBD 2017 Disease and Injury Incidence and Prevalence Collaborators (2018). Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392: 1789–1858, https://doi.org/10.1016/S0140-6736(18)32279-7.Search in Google Scholar

Ghalandari-Shamami, M., Nourizade, S., Yousefi, B., Vafaei, A.A., Pakdel, R., and Rashidy-Pour, A. (2019). Beneficial effects of physical activity and crocin against adolescent stress induced anxiety or depressive-like symptoms and dendritic morphology remodeling in prefrontal cortex in adult male rats. Neurochem. Res. 44: 917–929, https://doi.org/10.1007/s11064-019-02727-2.Search in Google Scholar PubMed

Gomez-Pinilla, F., Zhuang, Y., Feng, J., Ying, Z., and Fan, G. (2011). Exercise impacts brain-derived neurotrophic factor plasticity by engaging mechanisms of epigenetic regulation. Eur. J. Neurosci. 33: 383–390, https://doi.org/10.1111/j.1460-9568.2010.07508.x.Search in Google Scholar PubMed PubMed Central

Gormanns, P., Mueller, N.S., Ditzen, C., Wolf, S., Holsboer, F., and Turck, C.W. (2011). Phenome-transcriptome correlation unravels anxiety and depression related pathways. J. Psychiatr. Res. 45: 973–979, https://doi.org/10.1016/j.jpsychires.2010.12.010.Search in Google Scholar PubMed

Griffin, E.W., Mullally, S., Foley, C., Warmington, S.A., O’Mara, S.M., and Kelly, A.M. (2011). Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiol. Behav. 104: 934–941, https://doi.org/10.1016/j.physbeh.2011.06.005.Search in Google Scholar PubMed

Halmos, T. and Suba, I. (2019). The physiological role of growth hormone and insulin-like growth factors. Orv. Hetil. 160: 1774–1783, https://doi.org/10.1556/650.2019.31507.Search in Google Scholar PubMed

Hara, Y. (2015). Brain plasticity and rehabilitation in stroke patients. J. Nippon Med. Sch. 82: 4–13, https://doi.org/10.1272/jnms.82.4.Search in Google Scholar PubMed

Horowitz, A.M., Fan, X., Bieri, G., Smith, L.K., Sanchez-Diaz, C.I., Schroer, A.B., Gontier, G., Casaletto, K.B., Kramer, J.H., Williams, K.E., et al.. (2020). Blood factors transfer beneficial effects of exercise on neurogenesis and cognition to the aged brain. Science 369: 167–173, https://doi.org/10.1126/science.aaw2622.Search in Google Scholar PubMed PubMed Central

Hoss, A.G., Labadorf, A., Beach, T.G., Latourelle, J.C., and Myers, R.H. (2016). microRNA Profiles in Parkinson’s disease prefrontal cortex. Front. Aging Neurosci. 8: 36, https://doi.org/10.3389/fnagi.2016.00036.Search in Google Scholar PubMed PubMed Central

Ignacio, Z.M., da Silva, R.S., Plissari, M.E., Quevedo, J., and Reus, G.Z. (2019). Physical exercise and neuroinflammation in major depressive disorder. Mol. Neurobiol. 56: 8323–8335.10.1007/s12035-019-01670-1Search in Google Scholar

Ismail, F.Y., Fatemi, A., and Johnston, M.V. (2017). Cerebral plasticity: windows of opportunity in the developing brain. Eur. J. Paediatr. Neurol. 21: 23–48, https://doi.org/10.1016/j.ejpn.2016.07.007.Search in Google Scholar

Jung, M. and Pfeifer, G.P. (2015). Aging and DNA methylation. BMC Biol. 13: 7, https://doi.org/10.1186/s12915-015-0118-4.Search in Google Scholar

Kalia, L.V. and Lang, A.E. (2015). Parkinson’s disease. Lancet 386: 896–912, https://doi.org/10.1016/s0140-6736(14)61393-3.Search in Google Scholar

Kashimoto, R.K., Toffoli, L.V., Manfredo, M.H.F., Volpini, V.L., Martins-Pinge, M.C., Pelosi, G.G., and Gomes, M.V. (2016). Physical exercise affects the epigenetic programming of rat brain and modulates the adaptive response evoked by repeated restraint stress. Behav. Brain Res. 296: 286–289, https://doi.org/10.1016/j.bbr.2015.08.038.Search in Google Scholar PubMed

Kempermann, G., Kuhn, H.G., and Gage, F.H. (1998). Experience-induced neurogenesis in the senescent dentate gyrus. J. Neurosci. 18: 3206–3212, https://doi.org/10.1523/jneurosci.18-09-03206.1998.Search in Google Scholar

Kim, D., Cho, J., and Kang, H. (2019). Protective effect of exercise training against the progression of Alzheimer’s disease in 3xTg-AD mice. Behav. Brain Res. 374: 112105, https://doi.org/10.1016/j.bbr.2019.112105.Search in Google Scholar PubMed

Kiuchi, T., Lee, H., and Mikami, T. (2012). Regular exercise cures depression-like behavior via VEGF-Flk-1 signaling in chronically stressed mice. Neuroscience 207: 208–217, https://doi.org/10.1016/j.neuroscience.2012.01.023.Search in Google Scholar PubMed

Klempin, F., Beis, D., Mosienko, V., Kempermann, G., Bader, M., and Alenina, N. (2013). Serotonin is required for exercise-induced adult hippocampal neurogenesis. J. Neurosci. 33: 8270–8275, https://doi.org/10.1523/jneurosci.5855-12.2013.Search in Google Scholar PubMed PubMed Central

Krichevsky, A.M., King, K.S., Donahue, C.P., Khrapko, K., and Kosik, K.S. (2003). A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9: 1274–1281, https://doi.org/10.1261/rna.5980303.Search in Google Scholar PubMed PubMed Central

Krichevsky, A.M., Sonntag, K.-C., Isacson, O., and Kosik, K.S. (2006). Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 24: 857–864, https://doi.org/10.1634/stemcells.2005-0441.Search in Google Scholar PubMed PubMed Central

Kronenberg, G., Bick-Sander, A., Bunk, E., Wolf, C., Ehninger, D., and Kempermann, G. (2006). Physical exercise prevents age-related decline in precursor cell activity in the mouse dentate gyrus. Neurobiol. Aging 27: 1505–1513, https://doi.org/10.1016/j.neurobiolaging.2005.09.016.Search in Google Scholar

Kurdi, F.N. and Flora, R. (2019). Physical exercise increased brain-derived neurotrophic factor in elderly population with depression. Open Access Maced. J. Med. Sci. 7: 2057–2061, https://doi.org/10.3889/oamjms.2019.574.Search in Google Scholar

Kvam, S., Kleppe, C.L., Nordhus, I.H., and Hovland, A. (2016). Exercise as a treatment for depression: a meta-analysis. J. Affect. Disord. 202: 67–86, https://doi.org/10.1016/j.jad.2016.03.063.Search in Google Scholar

Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W., and Tuschl, T. (2002). Identification of tissue-specific microRNAs from mouse. Curr. Biol. 12: 735–739, https://doi.org/10.1016/s0960-9822(02)00809-6.Search in Google Scholar

Leal, G., Bramham, C.R., and Duarte, C.B. (2017). BDNF and hippocampal synaptic plasticity. Vitam. Horm. 104: 153–195, https://doi.org/10.1016/bs.vh.2016.10.004.Search in Google Scholar PubMed

Lee, J., Duan, W., and Mattson, M.P. (2002). Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J. Neurochem. 82: 1367–1375, https://doi.org/10.1046/j.1471-4159.2002.01085.x.Search in Google Scholar PubMed

Lee, J.C., Yau, S.Y., Lee, T.M.C., Lau, B.W., and So, K.F. (2016). Voluntary wheel running reverses the decrease in subventricular zone neurogenesis caused by corticosterone. Cell Transplant. 25: 1979–1986, https://doi.org/10.3727/096368916x692195.Search in Google Scholar PubMed

Lev-Vachnish, Y., Cadury, S., Rotter-Maskowitz, A., Feldman, N., Roichman, A., Illouz, T., Varvak, A., Nicola, R., Madar, R., and Okun, E. (2019). L-Lactate promotes adult hippocampal neurogenesis. Front. Neurosci. 13: 403, https://doi.org/10.3389/fnins.2019.00403.Search in Google Scholar PubMed PubMed Central

Lewis, B.P., Burge, C.B., and Bartel, D.P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15–20, https://doi.org/10.1016/j.cell.2004.12.035.Search in Google Scholar PubMed

Li, A., Yau, S.Y., Machado, S., Wang, P., Yuan, T.F., and So, K.F. (2019). Enhancement of hippocampal plasticity by physical exercise as a polypill for stress and depression: a review. CNS Neurol. Disord. Drug Targets 18: 294–306, https://doi.org/10.2174/1871527318666190308102804.Search in Google Scholar PubMed

Lin, Y., Dong, J., Yan, T., He, X., Zheng, X., Liang, H., and Sui, M. (2015). Involuntary, forced and voluntary exercises are equally capable of inducing hippocampal plasticity and the recovery of cognitive function after stroke. Neurol. Res. 37: 893–901, https://doi.org/10.1179/1743132815y.0000000074.Search in Google Scholar

Liu, W., Wu, W., Lin, G., Cheng, J., Zeng, Y., and Shi, Y. (2018). Physical exercise promotes proliferation and differentiation of endogenous neural stem cells via ERK in rats with cerebral infarction. Mol. Med. Rep. 18: 1455–1464, https://doi.org/10.3892/mmr.2018.9147.Search in Google Scholar

Louissaint, A.Jr., Rao, S., Leventhal, C., and Goldman, S.A. (2002). Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain. Neuron 34: 945–960, https://doi.org/10.1016/s0896-6273(02)00722-5.Search in Google Scholar

Lourenco, M.V., Frozza, R.L., de Freitas, G.B., Zhang, H., Kincheski, G.C., Ribeiro, F.C., Goncalves, R.A., Clarke, J.R., Beckman, D., Staniszewski, A., et al.. (2019). Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer’s models. Nat. Med. 25: 165–175, https://doi.org/10.1038/s41591-018-0275-4.Search in Google Scholar PubMed PubMed Central

Ma, C.L., Ma, X.T., Wang, J.J., Liu, H., Chen, Y.F., and Yang, Y. (2017). Physical exercise induces hippocampal neurogenesis and prevents cognitive decline. Behav. Brain Res. 317: 332–339, https://doi.org/10.1016/j.bbr.2016.09.067.Search in Google Scholar PubMed

MacIntosh, B.J., Crane, D.E., Sage, M.D., Rajab, A.S., Donahue, M.J., McIlroy, W.E., and Middleton, L.E. (2014). Impact of a single bout of aerobic exercise on regional brain perfusion and activation responses in healthy young adults. PLoS One 9: e85163, https://doi.org/10.1371/journal.pone.0085163.Search in Google Scholar

Madhav, T.R., Pei, Q., and Zetterström, T.S. (2001). Serotonergic cells of the rat raphe nuclei express mRNA of tyrosine kinase B (trkB), the high-affinity receptor for brain derived neurotrophic factor (BDNF). Brain Res. Mol. Brain Res. 93: 56–63, https://doi.org/10.1016/s0169-328x(01)00183-8.Search in Google Scholar

Maejima, H., Kanemura, N., Kokubun, T., Murata, K., and Takayanagi, K. (2018a). Exercise enhances cognitive function and neurotrophin expression in the hippocampus accompanied by changes in epigenetic programming in senescence-accelerated mice. Neurosci. Lett. 665: 67–73, https://doi.org/10.1016/j.neulet.2017.11.023.Search in Google Scholar PubMed

Maejima, H., Ninuma, S., Okuda, A., Inoue, T., and Hayashi, M. (2018b). Exercise and low-level GABAA receptor inhibition modulate locomotor activity and the expression of BDNF accompanied by changes in epigenetic regulation in the hippocampus. Neurosci. Lett. 685: 18–23, https://doi.org/10.1016/j.neulet.2018.07.009.Search in Google Scholar PubMed

Mamounas, L.A., Blue, M.E., Siuciak, J.A., and Altar, C.A. (1995). Brain-derived neurotrophic factor promotes the survival and sprouting of serotonergic axons in rat brain. J. Neurosci. 15: 7929–7939, https://doi.org/10.1523/jneurosci.15-12-07929.1995.Search in Google Scholar

Martínez-Cerdeño, V. and Noctor, S.C. (2018). Neural progenitor cell terminology. Front. Neuroanat. 12: 104, https://doi.org/10.3389/fnana.2018.00104.Search in Google Scholar PubMed PubMed Central

Martinowich, K., Hattori, D., Wu, H., Fouse, S., He, F., Hu, Y., Fan, G., and Sun, Y.E. (2003). DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 302: 890–893, https://doi.org/10.1126/science.1090842.Search in Google Scholar PubMed

Martinowich, K. and Lu, B. (2008). Interaction between BDNF and serotonin: role in mood disorders. Neuropsychopharmacology 33: 73–83, https://doi.org/10.1038/sj.npp.1301571.Search in Google Scholar PubMed

Mattson, M.P., Maudsley, S., and Martin, B. (2004). BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends Neurosci. 27: 589–594, https://doi.org/10.1016/j.tins.2004.08.001.Search in Google Scholar PubMed

Mir, S., Cai, W., Carlson, S.W., Saatman, K.E., and Andres, D.A. (2017). IGF-1 mediated neurogenesis involves a novel RIT1/Akt/Sox2 cascade. Sci. Rep. 7: 3283, https://doi.org/10.1038/s41598-017-03641-9.Search in Google Scholar PubMed PubMed Central

Mo, M., Xiao, Y., Huang, S., Cen, L., Chen, X., Zhang, L., Luo, Q., Li, S., Yang, X., Lin, X., and Xu, P. (2017). MicroRNA expressing profiles in A53T mutant alpha-synuclein transgenic mice and Parkinsonian. Oncotarget 8: 15–28, https://doi.org/10.18632/oncotarget.13905.Search in Google Scholar PubMed PubMed Central

Mojtahedi, S., Kordi, M.R., Hosseini, S.E., Omran, S.F., and Soleimani, M. (2013). Effect of treadmill running on the expression of genes that are involved in neuronal differentiation in the hippocampus of adult male rats. Cell Biol. Int. 37: 276–283, https://doi.org/10.1002/cbin.10022.Search in Google Scholar PubMed

Moon, H.Y., Becke, A., Berron, D., Becker, B., Sah, N., Benoni, G., Janke, E., Lubejko, S.T., Greig, N.H., Mattison, J.A., et al.. (2016). Running-induced systemic cathepsin B secretion is associated with memory function. Cell Metab. 24: 332–340, https://doi.org/10.1016/j.cmet.2016.05.025.Search in Google Scholar PubMed PubMed Central

Muñoz, A., Corrêa, C.L., Lopez-Lopez, A., Costa-Besada, M.A., Diaz-Ruiz, C., and Labandeira-Garcia, J.L. (2018). Physical exercise improves aging-related changes in angiotensin, IGF-1, SIRT1, SIRT3, and VEGF in the substantia nigra. J. Gerontol. 73: 1594–1601, https://doi.org/10.1093/gerona/gly072.Search in Google Scholar PubMed

Nam, S.M., Kim, J.W., Yoo, D.Y., Yim, H.S., Kim, D.W., Choi, J.H., Kim, W., Jung, H.Y., Won, M.H., Hwang, I.K., et al.. (2014). Physical exercise ameliorates the reduction of neural stem cell, cell proliferation and neuroblast differentiation in senescent mice induced by D-galactose. BMC Neurosci. 15: 116, https://doi.org/10.1186/s12868-014-0116-4.Search in Google Scholar PubMed PubMed Central

Niu, X., Zhao, Y., Yang, N., Zhao, X., Zhang, W., Bai, X., Li, A., Yang, W., and Lu, L. (2019). Proteasome activation by insulin-like growth factor-1/nuclear factor erythroid 2-related factor 2 signaling promotes exercise-induced neurogenesis. Stem Cells, https://doi.org/10.1002/stem.3102.Search in Google Scholar

Nosheny, R.L., Insel, P.S., Mattsson, N., Tosun, D., Buckley, S., Truran, D., Schuff, N., Aisen, P.S., and Weiner, M.W. (2019). Associations among amyloid status, age, and longitudinal regional brain atrophy in cognitively unimpaired older adults. Neurobiol. Aging 82: 110–119, https://doi.org/10.1016/j.neurobiolaging.2019.07.005.Search in Google Scholar

O’Kusky, J.R., Ye, P., and D’Ercole, A.J. (2000). Insulin-like growth factor-I promotes neurogenesis and synaptogenesis in the hippocampal dentate gyrus during postnatal development. J. Neurosci. 20: 8435–8442, https://doi.org/10.1523/jneurosci.20-22-08435.2000.Search in Google Scholar

Overall, R.W., Walker, T.L., Leiter, O., Lenke, S., Ruhwald, S., and Kempermann, G. (2013). Delayed and transient increase of adult hippocampal neurogenesis by physical exercise in DBA/2 mice. PLoS One 8: e83797, https://doi.org/10.1371/journal.pone.0083797.Search in Google Scholar

Palmer, T.D., Willhoite, A.R., and Gage, F.H. (2000). Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol. 425: 479–494, https://doi.org/10.1002/1096-9861(20001002)425:4<479::aid-cne2>3.0.co;2-3.10.1002/1096-9861(20001002)425:4<479::AID-CNE2>3.0.CO;2-3Search in Google Scholar

Pan-Vazquez, A., Rye, N., Ameri, M., McSparron, B., Smallwood, G., Bickerdyke, J., Rathbone, A., Dajas-Bailador, F., and Toledo-Rodriguez, M. (2015). Impact of voluntary exercise and housing conditions on hippocampal glucocorticoid receptor, miR-124 and anxiety. Mol. Brain 8: 40, https://doi.org/10.1186/s13041-015-0128-8.Search in Google Scholar PubMed PubMed Central

Pereira, A.C., Huddleston, D.E., Brickman, A.M., Sosunov, A.A., Hen, R., McKhann, G.M., Sloan, R., Gage, F.H., Brown, T.R., and Small, S.A. (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc. Natl. Acad. Sci. U.S.A. 104: 5638–5643, https://doi.org/10.1073/pnas.0611721104.Search in Google Scholar PubMed PubMed Central

Pietrelli, A., Matkovic, L., Vacotto, M., Lopez-Costa, J.J., Basso, N., and Brusco, A. (2018). Aerobic exercise upregulates the BDNF-serotonin systems and improves the cognitive function in rats. Neurobiol. Learn. Mem. 155: 528–542, https://doi.org/10.1016/j.nlm.2018.05.007.Search in Google Scholar PubMed

Pin-Barre, C. and Laurin, J. (2015). Physical exercise as a diagnostic, rehabilitation, and preventive tool: influence on neuroplasticity and motor recovery after stroke. Neural Plast. 2015: 608581, doi:https://doi.org/10.1155/2015/608581.Search in Google Scholar PubMed PubMed Central

Pons-Espinal, M., Gasperini, C., Marzi, M.J., Braccia, C., Armirotti, A., Pötzsch, A., Walker, T.L., Fabel, K., Nicassio, F., Kempermann, G., et al.. (2019). MiR-135a-5p is critical for exercise-induced adult neurogenesis. Stem Cell Rep. 12: 1298–1312, https://doi.org/10.1016/j.stemcr.2019.04.020.Search in Google Scholar PubMed PubMed Central

Popken, G.J., Dechert-Zeger, M., Ye, P., and D’Ercole, A.J. (2005). Brain development. Adv. Exp. Med. Biol. 567: 187–220, https://doi.org/10.1007/0-387-26274-1_8.Search in Google Scholar PubMed

Qiao, H., Li, M.-X., Xu, C., Chen, H.-B., An, S.-C., and Ma, X.-M. (2016). Dendritic spines in depression: what we learned from animal models. Neural Plast. 2016: 8056370, https://doi.org/10.1155/2016/8056370.Search in Google Scholar PubMed PubMed Central

Redila, V.A. and Christie, B.R. (2006). Exercise-induced changes in dendritic structure and complexity in the adult hippocampal dentate gyrus. Neuroscience 137: 1299–1307, https://doi.org/10.1016/j.neuroscience.2005.10.050.Search in Google Scholar PubMed

Redila, V.A., Olson, A.K., Swann, S.E., Mohades, G., Webber, A.J., Weinberg, J., and Christie, B.R. (2006). Hippocampal cell proliferation is reduced following prenatal ethanol exposure but can be rescued with voluntary exercise. Hippocampus 16: 305–311, https://doi.org/10.1002/hipo.20164.Search in Google Scholar PubMed

Redjems-Bennani, N., Jeandel, C., Lefebvre, E., Blain, H., Vidailhet, M., and Guéant, J.L. (1998). Abnormal substrate levels that depend upon mitochondrial function in cerebrospinal fluid from Alzheimer patients. Gerontology 44: 300–304, https://doi.org/10.1159/000022031.Search in Google Scholar PubMed

Reichardt, L.F. (2006). Neurotrophin-regulated signalling pathways. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361: 1545–1564, https://doi.org/10.1098/rstb.2006.1894.Search in Google Scholar PubMed PubMed Central

Reul, J.M. and Chandramohan, Y. (2007). Epigenetic mechanisms in stress-related memory formation. Psychoneuroendocrinology 32(Suppl. 1): S21–25, https://doi.org/10.1016/j.psyneuen.2007.03.016.Search in Google Scholar PubMed

Reul, J.M. and Nutt, D.J. (2008). Glutamate and cortisol – a critical confluence in PTSD? J. Psychopharmacol. 22: 469–472, https://doi.org/10.1177/0269881108094617.Search in Google Scholar PubMed

Reza-Zaldivar, E.E., Hernández-Sápiens, M.A., Minjarez, B., Gómez-Pinedo, U., Sánchez-González, V.J., Márquez-Aguirre, A.L., and Canales-Aguirre, A.A. (2020). Dendritic spine and synaptic plasticity in Alzheimer’s disease: a focus on microRNA. Front. Cell Dev. Biol. 8: 255, https://doi.org/10.3389/fcell.2020.00255.Search in Google Scholar PubMed PubMed Central

Ryu, H., Lee, J., Olofsson, B.A., Mwidau, A., Dedeoglu, A., Escudero, M., Flemington, E., Azizkhan-Clifford, J., Ferrante, R.J., and Ratan, R.R. (2003). Histone deacetylase inhibitors prevent oxidative neuronal death independent of expanded polyglutamine repeats via an Sp1-dependent pathway. Proc. Natl. Acad. Sci. U.S.A. 100: 4281–4286, https://doi.org/10.1073/pnas.0737363100.Search in Google Scholar PubMed PubMed Central

Saha, R.N. and Pahan, K. (2006). HATs and HDACs in neurodegeneration: a tale of disconcerted acetylation homeostasis. Cell Death Differ. 13: 539–550, https://doi.org/10.1038/sj.cdd.4401769.Search in Google Scholar PubMed PubMed Central

Sairanen, M., Lucas, G., Ernfors, P., Castrén, M., and Castrén, E. (2005). Brain-derived neurotrophic factor and antidepressant drugs have different but coordinated effects on neuronal turnover, proliferation, and survival in the adult dentate gyrus. J. Neurosci. 25: 1089–1094, https://doi.org/10.1523/jneurosci.3741-04.2005.Search in Google Scholar

Satoh, J., Kino, Y., and Niida, S. (2015). MicroRNA-Seq data analysis pipeline to identify blood biomarkers for Alzheimer’s disease from public data. Biomark. Insights 10: 21–31, https://doi.org/10.4137/bmi.s25132.Search in Google Scholar

Sharp, K. and Hewitt, J. (2014). Dance as an intervention for people with Parkinson’s disease: a systematic review and meta-analysis. Neurosci. Biobehav. Rev. 47: 445–456, https://doi.org/10.1016/j.neubiorev.2014.09.009.Search in Google Scholar PubMed

Siuda, J., Patalong-Ogiewa, M., Żmuda, W., Targosz-Gajniak, M., Niewiadomska, E., Matuszek, I., Jędrzejowska-Szypułka, H., Lewin-Kowalik, J., and Rudzińska-Bar, M. (2017). Cognitive impairment and BDNF serum levels. Neurol. Neurochir. Pol. 51: 24–32, https://doi.org/10.1016/j.pjnns.2016.10.001.Search in Google Scholar PubMed

Sleiman, S.F., Henry, J., Al-Haddad, R., El Hayek, L., Abou Haidar, E., Stringer, T., Ulja, D., Karuppagounder, S.S., Holson, E.B., Ratan, R.R., et al.. (2016). Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body beta-hydroxybutyrate. eLife 5: e15092, https://doi.org/10.7554/elife.15092.Search in Google Scholar

Smirnova, L., Gräfe, A., Seiler, A., Schumacher, S., Nitsch, R., and Wulczyn, F.G. (2005). Regulation of miRNA expression during neural cell specification. Eur. J. Neurosci. 21: 1469–1477, https://doi.org/10.1111/j.1460-9568.2005.03978.x.Search in Google Scholar PubMed

Sonntag, W.E., Lynch, C.D., Cooney, P.T., and Hutchins, P.M. (1997). Decreases in cerebral microvasculature with age are associated with the decline in growth hormone and insulin-like growth factor 1. Endocrinology 138: 3515–3520, https://doi.org/10.1210/endo.138.8.5330.Search in Google Scholar PubMed

Sorrells, S.F., Paredes, M.F., Cebrian-Silla, A., Sandoval, K., Qi, D., Kelley, K.W., James, D., Mayer, S., Chang, J., Auguste, K.I., et al.. (2018). Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 555: 377–381, https://doi.org/10.1038/nature25975.Search in Google Scholar PubMed PubMed Central

Spruston, N. (2008). Pyramidal neurons: dendritic structure and synaptic integration. Nat. Rev. Neurosci. 9: 206–221, https://doi.org/10.1038/nrn2286.Search in Google Scholar PubMed

Stranahan, A.M., Khalil, D., and Gould, E. (2007). Running induces widespread structural alterations in the hippocampus and entorhinal cortex. Hippocampus 17: 1017–1022, https://doi.org/10.1002/hipo.20348.Search in Google Scholar PubMed PubMed Central

Sun, L.Y. and D’Ercole, A.J. (2006). Insulin-like growth factor-I stimulates histone H3 and H4 acetylation in the brain in vivo. Endocrinology 147: 5480–5490, https://doi.org/10.1210/en.2006-0586.Search in Google Scholar PubMed PubMed Central

Tammen, S.A., Friso, S., and Choi, S.W. (2013). Epigenetics: the link between nature and nurture. Mol. Aspects Med. 34: 753–764, https://doi.org/10.1016/j.mam.2012.07.018.Search in Google Scholar PubMed PubMed Central

Toy, W.A., Petzinger, G.M., Leyshon, B.J., Akopian, G.K., Walsh, J.P., Hoffman, M.V., Vuckovic, M.G., and Jakowec, M.W. (2014). Treadmill exercise reverses dendritic spine loss in direct and indirect striatal medium spiny neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease. Neurobiol. Dis. 63: 201–209, https://doi.org/10.1016/j.nbd.2013.11.017.Search in Google Scholar PubMed PubMed Central

Trejo, J.L., Carro, E., and Torres-Aleman, I. (2001). Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J. Neurosci. 21: 1628–1634, https://doi.org/10.1523/jneurosci.21-05-01628.2001.Search in Google Scholar

Uysal, N., Kiray, M., Sisman, A.R., Camsari, U.M., Gencoglu, C., Baykara, B., Cetinkaya, C., and Aksu, I. (2015). Effects of voluntary and involuntary exercise on cognitive functions, and VEGF and BDNF levels in adolescent rats. Biotech. Histochem. 90: 55–68, https://doi.org/10.3109/10520295.2014.946968.Search in Google Scholar PubMed

van der Kleij, L.A., Petersen, E.T., Siebner, H.R., Hendrikse, J., Frederiksen, K.S., Sobol, N.A., Hasselbalch, S.G., and Garde, E. (2018). The effect of physical exercise on cerebral blood flow in Alzheimer’s disease. NeuroImage 20: 650–654, https://doi.org/10.1016/j.nicl.2018.09.003.Search in Google Scholar PubMed PubMed Central

van Praag, H., Christie, B.R., Sejnowski, T.J., and Gage, F.H. (1999a). Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc. Natl. Acad. Sci. U.S.A. 96: 13427–13431, https://doi.org/10.1073/pnas.96.23.13427.Search in Google Scholar PubMed PubMed Central

van Praag, H., Kempermann, G., and Gage, F.H. (1999b). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat. Neurosci. 2: 266–270, https://doi.org/10.1038/6368.Search in Google Scholar PubMed

van Praag, H., Shubert, T., Zhao, C., and Gage, F.H. (2005). Exercise enhances learning and hippocampal neurogenesis in aged mice. J. Neurosci. 25: 8680–8685, https://doi.org/10.1523/jneurosci.1731-05.2005.Search in Google Scholar

Vaynman, S., Ying, Z., and Gomez-Pinilla, F. (2003). Interplay between brain-derived neurotrophic factor and signal transduction modulators in the regulation of the effects of exercise on synaptic-plasticity. Neuroscience 122: 647–657, https://doi.org/10.1016/j.neuroscience.2003.08.001.Search in Google Scholar PubMed

Vaynman, S., Ying, Z., and Gomez-Pinilla, F. (2004). Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur. J. Neurosci. 20: 2580–2590, https://doi.org/10.1111/j.1460-9568.2004.03720.x.Search in Google Scholar PubMed

Voisin, S., Eynon, N., Yan, X., and Bishop, D.J. (2015). Exercise training and DNA methylation in humans. Acta Physiol. 213: 39–59, https://doi.org/10.1111/apha.12414.Search in Google Scholar PubMed

von Bernhardi, R., Bernhardi, L.E., and Eugenin, J. (2017). What is neural plasticity?. Adv. Exp. Med. Biol. 1015: 1–15, https://doi.org/10.1007/978-3-319-62817-2_1.Search in Google Scholar PubMed

von Bohlen und Halbach, O., and von Bohlen und Halbach, V. (2018). BDNF effects on dendritic spine morphology and hippocampal function. Cell Tissue Res. 373: 729–741, https://doi.org/10.1007/s00441-017-2782-x.Search in Google Scholar PubMed

Wahl, P., Zwingmann, L., Manunzio, C., Wolf, J., and Bloch, W. (2018). Higher accuracy of the lactate minimum test compared to established threshold concepts to determine maximal lactate steady state in running. Int. J. Sports Med. 39: 541–548, https://doi.org/10.1055/s-0044-102131.Search in Google Scholar PubMed

Wang, X., Sundquist, K., Hedelius, A., Palmér, K., Memon, A.A., and Sundquist, J. (2015). Circulating microRNA-144-5p is associated with depressive disorders. Clin. Epigenet. 7: 69, https://doi.org/10.1186/s13148-015-0099-8.Search in Google Scholar PubMed PubMed Central

Wu, S.Y., Wang, T.F., Yu, L., Jen, C.J., Chuang, J.I., Wu, F.S., Wu, C.W., and Kuo, Y.M. (2011). Running exercise protects the substantia nigra dopaminergic neurons against inflammation-induced degeneration via the activation of BDNF signaling pathway. Brain Behav. Immun. 25: 135–146, https://doi.org/10.1016/j.bbi.2010.09.006.Search in Google Scholar PubMed

Xie, Q., Cheng, J., Pan, G., Wu, S., Hu, Q., Jiang, H., Wang, Y., Xiong, J., Pang, Q., and Chen, X. (2019). Treadmill exercise ameliorates focal cerebral ischemia/reperfusion-induced neurological deficit by promoting dendritic modification and synaptic plasticity via upregulating caveolin-1/VEGF signaling pathways. Exp. Neurol. 313: 60–78, https://doi.org/10.1016/j.expneurol.2018.12.005.Search in Google Scholar PubMed

Xiong, Y., Mahmood, A., and Chopp, M. (2019). Remodeling dendritic spines for treatment of traumatic brain injury. Neural Regen. Res. 14: 1477–1480, https://doi.org/10.4103/1673-5374.255957.Search in Google Scholar PubMed PubMed Central

Xu, X., Fu, Z., and Le, W. (2019). Exercise and Parkinson’s disease. Int. Rev. Neurobiol. 147: 45–74, https://doi.org/10.1016/bs.irn.2019.06.003.Search in Google Scholar PubMed

Yang, J., Ruchti, E., Petit, J.M., Jourdain, P., Grenningloh, G., and Allaman, I. (2014). Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons. Proc. Natl. Acad. Sci. U.S.A. 111: 12228–12233, https://doi.org/10.1073/pnas.1322912111.Search in Google Scholar PubMed PubMed Central

Yau, S.-Y., Lau, B.W.-M., Tong, J.-B., Wong, R., Ching, Y.-P., Qiu, G., Tang, S.-W., Lee, T.M.C., and So, K.-F. (2011). Hippocampal neurogenesis and dendritic plasticity support running-improved spatial learning and depression-like behaviour in stressed rats. PLoS One 6: e24263, https://doi.org/10.1371/journal.pone.0024263.Search in Google Scholar PubMed PubMed Central

Yau, S.-Y., Lee, T.H.-Y., Li, A., Xu, A., and So, K.-F. (2018). Adiponectin mediates running-restored hippocampal neurogenesis in streptozotocin-induced type 1 diabetes in mice. Front. Neurosci. 12: 679, https://doi.org/10.3389/fnins.2018.00679.Search in Google Scholar PubMed PubMed Central

Yau, S.Y., Li, A., Hoo, R.L.C., Ching, Y.P., Christie, B.R., Lee, T.M.C., Xu, A., and So, K.-F. (2014). Physical exercise-induced hippocampal neurogenesis and antidepressant effects are mediated by the adipocyte hormone adiponectin. Proc. Natl. Acad. Sci. U.S.A. 111: 15810–15815, https://doi.org/10.1073/pnas.1415219111.Search in Google Scholar PubMed PubMed Central

Ye, P. and D’Ercole, A.J. (2006). Insulin-like growth factor actions during development of neural stem cells and progenitors in the central nervous system. J. Neurosci. Res. 83: 1–6, https://doi.org/10.1002/jnr.20688.Search in Google Scholar PubMed

Ying, S.-W., Futter, M., Rosenblum, K., Webber, M.J., Hunt, S.P., Bliss, T.V.P., and Bramham, C.R. (2002). Brain-derived neurotrophic factor induces long-term potentiation in intact adult hippocampus: requirement for ERK activation coupled to CREB and upregulation of Arc synthesis. J. Neurosci. 22: 1532–1540, https://doi.org/10.1523/jneurosci.22-05-01532.2002.Search in Google Scholar

Zhang, X., Zhang, L., Cheng, X., Guo, Y., Sun, X., Chen, G., Li, H., Li, P., Lu, X., Tian, M., et al.. (2014). IGF-1 promotes Brn-4 expression and neuronal differentiation of neural stem cells via the PI3K/Akt pathway. PLoS One 9: e113801, https://doi.org/10.1371/journal.pone.0113801.Search in Google Scholar PubMed PubMed Central

Zhao, Y., Pogue, A.I., and Lukiw, W.J. (2015). MicroRNA (miRNA) signaling in the human CNS in sporadic Alzheimer’s disease (AD)-novel and unique pathological features. Int. J. Mol. Sci. 16: 30105–30116, https://doi.org/10.3390/ijms161226223.Search in Google Scholar PubMed PubMed Central

Received: 2020-09-01
Accepted: 2020-10-26
Published Online: 2021-02-15
Published in Print: 2021-08-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.7.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2020-0099/html
Scroll to top button
-