Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (544)

Search Parameters:
Journal = ASI

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4634 KiB  
Article
Enhanced and Combined Representations in Extended Reality through Creative Industries
by Eleftherios Anastasovitis and Manos Roumeliotis
Appl. Syst. Innov. 2024, 7(4), 55; https://doi.org/10.3390/asi7040055 - 26 Jun 2024
Viewed by 371
Abstract
The urgent need for research and study with nondestructive and noninvasive methods and the preservation of cultural heritage led to the development and application of methodologies for the multi-level digitization of cultural elements. Photogrammetry and three-dimensional scanning offer photorealistic and accurate digital representations, [...] Read more.
The urgent need for research and study with nondestructive and noninvasive methods and the preservation of cultural heritage led to the development and application of methodologies for the multi-level digitization of cultural elements. Photogrammetry and three-dimensional scanning offer photorealistic and accurate digital representations, while X-rays and computed tomography reveal properties and characteristics of the internal and invisible structure of objects. However, the investigation of and access to these datasets are, in several cases, limited due to the increased computing resources and the special knowledge required for their processing and analysis. The evolution of immersive technologies and the creative industry of video games offers unique user experiences. Game engines are the ideal platform to host the development of easy-to-use applications that combine heterogeneous data while simultaneously integrating immersive and emerging technologies. This article seeks to shed light on how heterogeneous digital representations of 3D imaging and tomography can be harmoniously combined in a virtual space and, through simple interactions, provide holistic knowledge and enhanced experience to end users. This research builds on previous experience concerning the virtual museum for the Antikythera Mechanism and describes a conceptual framework for the design and development of an affordable and easy-to-use display tool for combined representations of heterogeneous datasets in the virtual space. Our solution was validated by 62 users who participated in tests and evaluations. The results show that the proposed methodology met its objectives. Apart from cultural heritage, the specific methodology could be easily extended and adapted for training purposes in a wide field of application, such as in education, health, engineering, industry, and more. Full article
(This article belongs to the Special Issue Advanced Technologies and Methodologies in Education 4.0)
Show Figures

Figure 1

---

Figure 3

---

Figure 3 Cont.

---

Figure 4

24 pages, 917 KiB  
Technical Note
Towards Unlocking the Hidden Potentials of the Data-Centric AI Paradigm in the Modern Era
by Abdul Majeed and Seong Oun Hwang
Appl. Syst. Innov. 2024, 7(4), 54; https://doi.org/10.3390/asi7040054 - 24 Jun 2024
Viewed by 352
Abstract
Data-centric artificial intelligence (DC-AI) is a modern paradigm that gives more priority to data quality enhancement, rather than only optimizing the complex codes of AI models. The DC-AI paradigm is expected to substantially advance the status of AI research and developments, which has [...] Read more.
Data-centric artificial intelligence (DC-AI) is a modern paradigm that gives more priority to data quality enhancement, rather than only optimizing the complex codes of AI models. The DC-AI paradigm is expected to substantially advance the status of AI research and developments, which has been solely based on model-centric AI (MC-AI) over the past 30 years. Until present, there exists very little knowledge about DC-AI, and its significance in terms of solving real-world problems remains unexplored in the recent literature. In this technical note, we present the core aspects of DC-AI and MC-AI and discuss their interplay when used to solve some real-world problems. We discuss the potential scenarios/situations that require the integration of DC-AI with MC-AI to solve challenging problems in AI. We performed a case study on a real-world dataset to corroborate the potential of DC-AI in realistic scenarios and to prove its significance over MC-AI when either data are limited or their quality is poor. Afterward, we comprehensively discuss the challenges that currently hinder the realization of DC-AI, and we list promising avenues for future research and development concerning DC-AI. Lastly, we discuss the next-generation computing for DC-AI that can foster DC-AI-related developments and can help transition DC-AI from theory to practice. Our detailed analysis can guide AI practitioners toward exploring the undisclosed potential of DC-AI in the current AI-driven era. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

---

Figure 3

---

Figure 4

---

Figure 5

---

Figure 6

---

Figure 7

---

Figure 8

---

Figure 9

29 pages, 5934 KiB  
Article
The Method of Restoring Lost Information from Sensors Based on Auto-Associative Neural Networks
by Serhii Vladov, Ruslan Yakovliev, Victoria Vysotska, Mariia Nazarkevych and Vasyl Lytvyn
Appl. Syst. Innov. 2024, 7(3), 53; https://doi.org/10.3390/asi7030053 - 20 Jun 2024
Viewed by 387
Abstract
The research aims to develop a neural network-based lost information restoration method when the complex nonlinear technical object (using the example of helicopter turboshaft engines) sensors fail during operation. The basis of the research is an auto-associative neural network (autoencoder), which makes it [...] Read more.
The research aims to develop a neural network-based lost information restoration method when the complex nonlinear technical object (using the example of helicopter turboshaft engines) sensors fail during operation. The basis of the research is an auto-associative neural network (autoencoder), which makes it possible to restore lost information due to the sensor failure with an accuracy of more than 99%. An auto-associative neural network (autoencoder)-modified training method is proposed. It uses regularization coefficients that consist of the loss function to create a more stable and common model. It works well on the training sample of data and can produce good results on new data. Also, it reduces its overtraining risk when it adapts too much to the training data sample and loses its ability to generalize new data. This is especially important for small amounts of data or complex models. It has been determined based on the computational experiment results (the example of the TV3-117 turboshaft engine) that lost information restoration based on an auto-associative neural network provides a data restoring error of no more than 0.45% in the case of single failures and no more than 0.6% in case of double failures of the engine parameter registration sensor event. Full article
(This article belongs to the Section Information Systems)
Show Figures

Figure 1

---

Figure 3

---

Figure 4

---

Figure 5

---

Figure 6

---

Figure 7

---

Figure 8

---

Figure 9

---

Figure 10

---

Figure 11

---

Figure 12

---

Figure 13

---

Figure 14

---

Figure 15

17 pages, 4877 KiB  
Article
Smart Parking: Enhancing Urban Mobility with Fog Computing and Machine Learning-Based Parking Occupancy Prediction
by Francisco J. Enríquez, Jose-Manuel Mejía-Muñoz, Gabriel Bravo and Oliverio Cruz-Mejía
Appl. Syst. Innov. 2024, 7(3), 52; https://doi.org/10.3390/asi7030052 - 17 Jun 2024
Viewed by 362
Abstract
Parking occupancy is difficult in most modern cities because of increases in the accessibility and use of motor vehicles, and users generally take several minutes or even hours to find a place to park. In this work, we propose a smart parking prediction [...] Read more.
Parking occupancy is difficult in most modern cities because of increases in the accessibility and use of motor vehicles, and users generally take several minutes or even hours to find a place to park. In this work, we propose a smart parking prediction model in order to help users locate in advance the availability of parking near the places they plan to visit. For this it is proposed a fog computing architecture that integrates a machine learning algorithm based on AdaBoost to predict parking places hours or days in advance. Additionally, a user interface was developed, which involves the collection of user inputs through a mobile application where the user is prompted to enter the destination location and the prediction time interval. Through extensive experimentation using real-world parking flow data, our proposed algorithm demonstrated an improved level of accuracy compared with alternative prediction methods. Moreover, a simulation was conducted to evaluate the system’s latency when using cloud computing versus our hybrid approach combining both fog and cloud computing. The results showed that employing the fog module in conjunction with cloud computing significantly reduced response delay in comparison with using cloud computing alone. Full article
Show Figures

Figure 1

---

Figure 3

---

Figure 4

---

Figure 5

---

Figure 6

---

Figure 7

---

Figure 8

---

Figure 9

---

Figure 10

---

Figure 11

---

Figure 12

---

Figure 13

---

Figure 14

---

Figure 15

46 pages, 4394 KiB  
Article
Empowering Healthcare: A Comprehensive Guide to Implementing a Robust Medical Information System—Components, Benefits, Objectives, Evaluation Criteria, and Seamless Deployment Strategies
by Ana-Maria Ștefan, Nicu-Răzvan Rusu, Elena Ovreiu and Mihai Ciuc
Appl. Syst. Innov. 2024, 7(3), 51; https://doi.org/10.3390/asi7030051 - 14 Jun 2024
Viewed by 708
Abstract
In the ever-evolving landscape of healthcare, the implementation of a robust medical information system stands as a transformative endeavor. This article serves as a comprehensive guide, delineating the intricate steps involved in deploying an effective medical information system. Delving into the main components [...] Read more.
In the ever-evolving landscape of healthcare, the implementation of a robust medical information system stands as a transformative endeavor. This article serves as a comprehensive guide, delineating the intricate steps involved in deploying an effective medical information system. Delving into the main components that constitute this innovative system, we explore its fundamental architecture and how each element contributes to seamless information flow. The benefits of adopting a medical information system are highlighted, emphasizing improved patient care, streamlined processes, and enhanced decision making for healthcare professionals. Full article
Show Figures

Figure 1

---

Figure 3

---

Figure 4

---

Figure 5

---

Figure 6

---

Figure 7

---

Figure 8

---

Figure 9

---

Figure 10

---

Figure 11

---

Figure 12

---

Figure 13

17 pages, 1628 KiB  
Article
Boosting Engineering Education with Virtual Reality: An Experiment to Enhance Student Knowledge Retention
by Fernando Elemar Vicente dos Anjos, Adriano de Oliveira Martins, Gislene Salim Rodrigues, Miguel Afonso Sellitto and Debora Oliveira da Silva
Appl. Syst. Innov. 2024, 7(3), 50; https://doi.org/10.3390/asi7030050 - 13 Jun 2024
Viewed by 408
Abstract
This article is about experiments investigating teaching and learning processes and their effects on students. Specifically, the laboratory experiment method aims to determine if using virtual reality in classes leads to better learning outcomes, knowledge retention, satisfaction, engagement, and attractiveness compared to traditional [...] Read more.
This article is about experiments investigating teaching and learning processes and their effects on students. Specifically, the laboratory experiment method aims to determine if using virtual reality in classes leads to better learning outcomes, knowledge retention, satisfaction, engagement, and attractiveness compared to traditional teaching methods. The study found that students who used VR (Experimental Group—EG) had significantly better learning outcomes (with an average of 5.9747) compared to the control group (Control Group—CG), who only had traditional classes (with an average of 4.6229). The study employed a Likert scale from 1 to 7. The difference between EG and CG was 29.2%. Furthermore, the study found that students in the EG had higher knowledge retention, satisfaction, engagement, and attractiveness compared to the CG. All measurements were above 6.4 on the same scale. This study is important because it explores innovative teaching methods and their potential to improve learning outcomes, satisfaction, and efficiency. It also opens up avenues for further research on teaching methodologies for undergraduate students. Full article
Show Figures

Figure 1

---

Figure 3

---

Figure 4

25 pages, 24398 KiB  
Article
Meat Texture Image Classification Using the Haar Wavelet Approach and a Gray-Level Co-Occurrence Matrix
by Kiswanto Kiswanto, Hadiyanto Hadiyanto and Eko Sediyono
Appl. Syst. Innov. 2024, 7(3), 49; https://doi.org/10.3390/asi7030049 - 12 Jun 2024
Viewed by 270
Abstract
This research aims to examine the use of image processing and texture analysis to find a more reliable and efficient solution for identifying and classifying types of meat, based on their texture. The method used involves the use of feature extraction, Haar wavelet, [...] Read more.
This research aims to examine the use of image processing and texture analysis to find a more reliable and efficient solution for identifying and classifying types of meat, based on their texture. The method used involves the use of feature extraction, Haar wavelet, and gray-level co-occurrence matrix (GLCM) (with angles of 0°, 45°, 90°, and 135°), supported by contrast, correlation, energy, homogeneity, and entropy matrices. The test results showed that the k-NN algorithm excelled at identifying the texture of fresh (99%), frozen (99%), and rotten (96%) meat, with high accuracy. The GLCM provided good results, especially on texture images of fresh (183.21) and rotten meat (115.79). The Haar wavelet results were lower than those of the k-NN algorithm and GLCM, but this method was still useful for identifying texture images of fresh meat (89.96). This research development is expected to significantly increase accuracy and efficiency in identifying and classifying types of meat based on texture in the future, reducing human error and aiding in prompt evaluation. Full article
Show Figures

Figure 1

---

Figure 3

---

Figure 4

---

Figure 4 Cont.

---

Figure 5

28 pages, 374 KiB  
Review
A Global Overview of SVA—Spatial–Visual Ability
by Shweta Tiwari, Bhavesh Shah and Arunachalam Muthiah
Appl. Syst. Innov. 2024, 7(3), 48; https://doi.org/10.3390/asi7030048 - 3 Jun 2024
Viewed by 395
Abstract
This study examines the global literature that looks at spatial–visual abilities (SVA) while considering the numerous differential studies, methods of evaluation designed over a century, and multiple external influences on its development. The dataset was retrieved from Google Scholar and publisher databases such [...] Read more.
This study examines the global literature that looks at spatial–visual abilities (SVA) while considering the numerous differential studies, methods of evaluation designed over a century, and multiple external influences on its development. The dataset was retrieved from Google Scholar and publisher databases such as Elsevier, Taylor & Francis, Springer, etc. Only factual reports and bibliographic reviews were included in an analysis of a total of 87 documents. Each study of SVA is classified based on information, country, year, and age groupings. SVA has been extensively studied in the areas of “STEM (Science, Technology, Engineering and Mathematics) fields”, “demographic factors” and “other activities”. “Spatial visualisation” or “visual ability” is the term employed to refer to the cognitive ability that allows one to comprehend, mentally process, and manipulate three-dimensional visuospatial shapes. One of the most crucial distinct abilities involved is spatial aptitude, which aids in understanding numerous aspects of everyday and academic life. It is especially vital for comprehending scientific concepts, and it has been extensively studied. Nearly all multiple-aptitude assessments include spatial ability. It is determined that over the past two decades, the study of SVA has gained momentum, most likely because of information being digitised. Within the vast reservoir of spatial-cognition research, the majority of the studies examined here originate from the United States of America, with less than a quarter of the studies based in the Asia–Pacific region and the Middle East. This paper presents a comprehensive review of the literature on the assessment of SVA with respect to sector, year, country, age and socio-economic factors. It also offers a detailed examination of the use of spatial interventions in educational environments to integrate spatial abilities with training in architecture and interior design. Full article
17 pages, 1554 KiB  
Article
Coopetition with the Industrial IoT: A Service-Dominant Logic Approach
by Agostinho da Silva and Antonio J. Marques Cardoso
Appl. Syst. Innov. 2024, 7(3), 47; https://doi.org/10.3390/asi7030047 - 31 May 2024
Viewed by 353
Abstract
Abstract: This research addresses the critical gap in enabling effective coopetition networks through technological innovation with the development of Cockpit4.0+, an Industrial Internet of Things (IIoT) artefact tailored for small- and medium-sized enterprises (SMEs). By employing the principles of Service-Dominant Logic (S-D Logic) [...] Read more.
Abstract: This research addresses the critical gap in enabling effective coopetition networks through technological innovation with the development of Cockpit4.0+, an Industrial Internet of Things (IIoT) artefact tailored for small- and medium-sized enterprises (SMEs). By employing the principles of Service-Dominant Logic (S-D Logic) and leveraging the Design Science Research (DSR) methodology, Cockpit4.0+ represents a pioneering approach to incorporating the IIoT within ecosystems for value co-creation. This facilitates competition and cooperation among firms, enhancing the operational dynamics within SME networks. Evaluated by experts in the ornamental stone sector, a significant sector of the Portuguese economy, the system demonstrated a positive functional acceptance rate of 78.9%. An experimental test was conducted following the positive preliminary functional evaluation of Cockpit4.0+, especially among more digitally advanced companies. The findings revealed that the on-time delivery performance under current best practices (CB.Ps) was 67.1%. In contrast, implementing coopetition network practices (CN.Ps) increased on-time delivery to 77.5%. These positive evaluations of Cockpit4.0+ underscore the practical applicability of S-D Logic and provide fresh insights into the dynamics of coopetition, particularly beneficial for SMEs. Despite its promising results, the real-world efficacy of IIoT systems like Cockpit4.0+ requires further empirical studies to verify these findings. Future research should focus on examining the scalability of Cockpit4.0+ and its adaptability across various sectors and enhancing its cybersecurity measures to ensure its long-term success and broader adoption. Full article
(This article belongs to the Special Issue New Challenges of Innovation, Sustainability, Resilience in X.0 Era)
Show Figures

Figure 1

---

Figure 3

---

Figure 4

---

Figure 5

13 pages, 4078 KiB  
Article
Estimation of Total Real and Reactive Power Losses in Electrical Power Systems via Artificial Neural Network
by Giovana Gonçalves da Silva, Alexandre de Queiroz, Enio Garbelini, Wesley Prado Leão dos Santos, Carlos Roberto Minussi and Alfredo Bonini Neto
Appl. Syst. Innov. 2024, 7(3), 46; https://doi.org/10.3390/asi7030046 - 29 May 2024
Viewed by 311
Abstract
Total real and reactive power losses in electrical power systems are an inevitable phenomenon and occur due to several factors, such as conductor resistance, transformer impedance, line reactance, equipment losses, and phase unbalance. Minimizing them is crucial to the system’s efficiency. In this [...] Read more.
Total real and reactive power losses in electrical power systems are an inevitable phenomenon and occur due to several factors, such as conductor resistance, transformer impedance, line reactance, equipment losses, and phase unbalance. Minimizing them is crucial to the system’s efficiency. In this study, an artificial neural network, specifically a Multi-layer Perceptron, was employed to predict total real and reactive power losses in electrical systems. The network is composed of three layers: an input layer consisting of the variables loading factor, real and reactive power generated on the slack bus, a hidden layer, and an output layer representing the total real and reactive power losses. The training method used was backpropagation, adjusting the weights based on the desired output. The results obtained, using datasets from IEEE systems with 14, 30, and 57 buses, showed satisfactory performance, with a mean squared error of around 10−4 and a coefficient of determination (R2) of 0.998. In validation with 20% of the data that was not part of the training, the network demonstrated effectiveness, with a mean squared error around 10−3. This indicates that the network was able to accurately predict total power losses based on loads, generating estimates close to the desired values. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

---

Figure 3

---

Figure 4

---

Figure 5

---

Figure 6

---

Figure 7

---

Figure 8

---

Figure 9

---

Figure 10

---

Figure 11

57 pages, 30349 KiB  
Review
Recent Trends of Authentication Methods in Extended Reality: A Survey
by Louisa Hallal, Jason Rhinelander and Ramesh Venkat
Appl. Syst. Innov. 2024, 7(3), 45; https://doi.org/10.3390/asi7030045 - 28 May 2024
Viewed by 914
Abstract
Extended Reality (XR) is increasingly gaining momentum in industries such as retail, health, and education. To protect users’ personal data, establishing a secure authentication system for XR devices becomes essential. Recently, the focus on authentication methods for XR devices has been limited. To [...] Read more.
Extended Reality (XR) is increasingly gaining momentum in industries such as retail, health, and education. To protect users’ personal data, establishing a secure authentication system for XR devices becomes essential. Recently, the focus on authentication methods for XR devices has been limited. To further our understanding of this topic, we surveyed authentication schemes, particularly systems and methods deployed in XR settings. In this survey, we focused on reviewing and evaluating papers published during the last decade (between 2014 and 2023). We compared knowledge-based authentication, physical biometrics, behavioral biometrics, and multi-model methods in terms of accuracy, security, and usability. We also highlighted the benefits and drawbacks of those methods. These highlights will direct future Human–computer Interaction (HCI) and security research to develop secure, reliable, and practical authentication systems. Full article
Show Figures

Figure 1

16 pages, 14128 KiB  
Article
A Road Behavior Pattern-Detection Model in Querétaro City Streets by the Use of Shape Descriptors
by Antonio Trejo-Morales and Hugo Jimenez-Hernandez
Appl. Syst. Innov. 2024, 7(3), 44; https://doi.org/10.3390/asi7030044 - 27 May 2024
Viewed by 493
Abstract
In this research, a proposed model aims to automatically identify patterns of spatial and temporal behavior of moving objects in video sequences. The moving objects are analyzed and characterized based on their shape and observable attributes in displacement. To quantify the moving objects [...] Read more.
In this research, a proposed model aims to automatically identify patterns of spatial and temporal behavior of moving objects in video sequences. The moving objects are analyzed and characterized based on their shape and observable attributes in displacement. To quantify the moving objects over time and form a homogeneous database, a set of shape descriptors is introduced. Geometric measurements of shape, contrast, and connectedness are used to represent each moving object. The proposal uses Granger’s theory to find causal relationships from the history of each moving object stored in a database. The model is tested in two scenarios; the first is a public database, and the second scenario uses a proprietary database from a real scenario. The results show an average accuracy value of 78% in the detection of atypical behaviors in positive and negative dependence relationships. Full article
(This article belongs to the Special Issue New Challenges of Innovation, Sustainability, Resilience in X.0 Era)
Show Figures

Figure 1

---

Figure 3

---

Figure 4

---

Figure 5

---

Figure 6

---

Figure 7

---

Figure 8

---

Figure 9

---

Figure 10

---

Figure 11

---

Figure 12

23 pages, 7234 KiB  
Article
Numerical Simulation and Development of a Continuous Microwave-Assisted Pilot Plant for Shelled Almond Processing
by Luciano Mescia, Alessandro Leone, Claudio Maria Lamacchia, Angela Ferraris, Domenico Caggiano, Antonio Berardi and Antonia Tamborrino
Appl. Syst. Innov. 2024, 7(3), 43; https://doi.org/10.3390/asi7030043 - 27 May 2024
Viewed by 418
Abstract
This paper outlines the numerical modeling procedure aimed at defining the guidelines for the development of a continuous microwave-assisted pilot plant for shelled almond disinfestation, as an alternative to the use of chemicals. To this end, a 3D Multiphysics numerical tool involving both [...] Read more.
This paper outlines the numerical modeling procedure aimed at defining the guidelines for the development of a continuous microwave-assisted pilot plant for shelled almond disinfestation, as an alternative to the use of chemicals. To this end, a 3D Multiphysics numerical tool involving both electromagnetic and thermal models was developed to predict the temperature and electric field profiles inside the microwave treatment chamber. Three different microwave sources arrangements were simulated and the accuracy of the model was verified under different residence times of almonds in the treatment chamber using the developed prototype. The modeling results demonstrated that the arrangement having five microwave sources, each delivering a maximum power of 1.5 kW and frequency of 2.45 GHz, ensures good heating uniformity. The obtained results proved that the model enables the accurate prediction of the temperature trend (root-mean-square error/RMSE = 0.82). A strong linear regression was detected for the standard deviation between the simulated and experimental data (linear regression, R2 = 0.91). The very low COV value for the experimental temperature data demonstrated the heating uniformity as the treatment time changed. The developed model and the simulation strategy used may provide useful design guidance for microwave-assisted continuous plants for disinfestation, with a significant impact on the almond industry. Full article
Show Figures

Figure 1

---

Figure 2 Cont.

---

Figure 3

---

Figure 3 Cont.

---

Figure 4

---

Figure 4 Cont.

---

Figure 5

---

Figure 5 Cont.

---

Figure 6

---

Figure 6 Cont.

---

Figure 7

---

Figure 8

---

Figure 9

---

Figure 10

---

Figure 11

---

Figure 12

13 pages, 5281 KiB  
Article
Design and Implementation of Adam: A Humanoid Robotic Head with Social Interaction Capabilities
by Sherif Said, Karim Youssef, Benrose Prasad, Ghaneemah Alasfour, Samer Alkork and Taha Beyrouthy
Appl. Syst. Innov. 2024, 7(3), 42; https://doi.org/10.3390/asi7030042 - 27 May 2024
Viewed by 541
Abstract
Social robots are being conceived with different characteristics and being used in different applications. The growth of social robotics benefits from advances in fabrication, sensing, and actuation technologies, as well as signal processing and artificial intelligence. This paper presents a design and implementation [...] Read more.
Social robots are being conceived with different characteristics and being used in different applications. The growth of social robotics benefits from advances in fabrication, sensing, and actuation technologies, as well as signal processing and artificial intelligence. This paper presents a design and implementation of the humanoid robotic platform Adam, consisting of a motorized human-like head with precise movements of the eyes, jaw, and neck, together with capabilities of face tracking and vocal conversation using ChatGPT. Adam relies on 3D-printed parts together with a microphone, a camera, and proper servomotors, and it has high structural integrity and flexibility. Adam’s control framework consists of an adequate signal exploitation and motor command strategy that allows efficient social interactions. Adam is an innovative platform that combines manufacturability, user-friendliness, low costs, acceptability, and sustainability, offering advantages compared with other platforms. Indeed, the platform’s hardware and software components are adjustable and allow it to increase its abilities and adapt them to different applications in a variety of roles. Future work will entail the development of a body for Adam and the addition of skin-like materials to enhance its human-like appearance. Full article
(This article belongs to the Section Human-Computer Interaction)
Show Figures

Figure 1

---

Figure 3

---

Figure 4

---

Figure 5

---

Figure 6

---

Figure 7

---

Figure 8

---

Figure 9

---

Figure 10

---

Figure 11

---

Figure 12

---

Figure 13

17 pages, 5505 KiB  
Article
Fault Detection and Normal Operating Condition in Power Transformers via Pattern Recognition Artificial Neural Network
by André Gifalli, Alfredo Bonini Neto, André Nunes de Souza, Renan Pinal de Mello, Marco Akio Ikeshoji, Enio Garbelini and Floriano Torres Neto
Appl. Syst. Innov. 2024, 7(3), 41; https://doi.org/10.3390/asi7030041 - 24 May 2024
Viewed by 499
Abstract
Aging, degradation, or damage to internal insulation materials often contribute to transformer failures. Furthermore, combustible gases can be produced when these insulation materials experience thermal or electrical stresses. This paper presents an artificial neural network for pattern recognition (PRN) to classify the operating [...] Read more.
Aging, degradation, or damage to internal insulation materials often contribute to transformer failures. Furthermore, combustible gases can be produced when these insulation materials experience thermal or electrical stresses. This paper presents an artificial neural network for pattern recognition (PRN) to classify the operating conditions of power transformers (normal, thermal faults, and electrical faults) depending on the combustible gases present in them. Two network configurations were presented, one with five and the other with ten neurons in the hidden layer. The main advantage of applying this model through artificial neural networks is its ability to capture the nonlinear characteristics of the samples under study, thus avoiding the need for iterative procedures. The effectiveness and applicability of the proposed methodology were evaluated on 815 real data samples. Based on the results, the PRN performed well in both training and validation (for samples that were not part of the training), with a mean squared error (MSE) close to expected (0.001). The network was able to classify the samples with a 98% accuracy rate of the 815 samples presented and with 100% accuracy in validation, showing that the methodology developed is capable of acting as a tool for diagnosing the operability of power transformers. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

---

Figure 3

---

Figure 4

---

Figure 5

---

Figure 6

---

Figure 7

---

Figure 8

---

Figure 9

---

Figure 10

---

Figure 11

Back to TopTop -