Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (11,275)

Search Parameters:
Journal = Pharmaceutics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1623 KiB  
Article
An Immunconjugate Vaccine Alters Distribution and Reduces the Antinociceptive, Behavioral and Physiological Effects of Fentanyl in Male and Female Rats
by Colin N. Haile, Miah D. Baker, Sergio A. Sanchez, Carlos A. Lopez Arteaga, Anantha L. Duddupudi, Gregory D. Cuny, Elizabeth B. Norton, Thomas R. Kosten and Therese A. Kosten
Pharmaceutics 2022, 14(11), 2290; https://doi.org/10.3390/pharmaceutics14112290 - 26 Oct 2022
Cited by 8 | Viewed by 58240
Abstract
Fentanyl (FEN) is a potent synthetic opioid associated with increasing incidence of opioid use disorder (OUD) and fatal opioid overdose. Vaccine immunotherapy for FEN-associated disorders may be a viable therapeutic strategy. Here, we expand and confirm our previous study in mice showing immunological [...] Read more.
Fentanyl (FEN) is a potent synthetic opioid associated with increasing incidence of opioid use disorder (OUD) and fatal opioid overdose. Vaccine immunotherapy for FEN-associated disorders may be a viable therapeutic strategy. Here, we expand and confirm our previous study in mice showing immunological and antinociception efficacy of our FEN vaccine administered with the adjuvant dmLT. In this study, immunized male and female rats produced significant levels of anti-FEN antibodies that were highly effective at neutralizing FEN–induced antinociception in the tail flick assay and hot plate assays. The vaccine also decreased FEN brain levels following drug administration. Immunization blocked FEN-induced, but not morphine-induced, rate-disrupting effects on schedule-controlled responding. Vaccination prevented decreases on physiological measures (oxygen saturation, heart rate) and reduction in overall activity following FEN administration in male rats. The impact of FEN on these measures was greater in unvaccinated male rats compared to unvaccinated female rats. Cross-reactivity assays showed anti-FEN antibodies bound to FEN and sufentanil but not to morphine, methadone, buprenorphine, or oxycodone. These data support further clinical development of this vaccine to address OUD in humans. Full article
(This article belongs to the Section Biologics and Biosimilars)
Show Figures

Figure 1

---

Figure 3

---

Figure 4

---

Figure 5

---

Figure 6

27 pages, 1284 KiB  
Review
Opportunities and Challenges in the Delivery of mRNA-Based Vaccines
by Abishek Wadhwa, Anas Aljabbari, Abhijeet Lokras, Camilla Foged and Aneesh Thakur
Pharmaceutics 2020, 12(2), 102; https://doi.org/10.3390/pharmaceutics12020102 - 28 Jan 2020
Cited by 331 | Viewed by 50774
Abstract
In the past few years, there has been increasing focus on the use of messenger RNA (mRNA) as a new therapeutic modality. Current clinical efforts encompassing mRNA-based drugs are directed toward infectious disease vaccines, cancer immunotherapies, therapeutic protein replacement therapies, and treatment of [...] Read more.
In the past few years, there has been increasing focus on the use of messenger RNA (mRNA) as a new therapeutic modality. Current clinical efforts encompassing mRNA-based drugs are directed toward infectious disease vaccines, cancer immunotherapies, therapeutic protein replacement therapies, and treatment of genetic diseases. However, challenges that impede the successful translation of these molecules into drugs are that (i) mRNA is a very large molecule, (ii) it is intrinsically unstable and prone to degradation by nucleases, and (iii) it activates the immune system. Although some of these challenges have been partially solved by means of chemical modification of the mRNA, intracellular delivery of mRNA still represents a major hurdle. The clinical translation of mRNA-based therapeutics requires delivery technologies that can ensure stabilization of mRNA under physiological conditions. Here, we (i) review opportunities and challenges in the delivery of mRNA-based therapeutics with a focus on non-viral delivery systems, (ii) present the clinical status of mRNA vaccines, and (iii) highlight perspectives on the future of this promising new type of medicine. Full article
Show Figures

Figure 1

45 pages, 684 KiB  
Review
Evidence of Drug–Nutrient Interactions with Chronic Use of Commonly Prescribed Medications: An Update
by Emily S. Mohn, Hua J. Kern, Edward Saltzman, Susan H. Mitmesser and Diane L. McKay
Pharmaceutics 2018, 10(1), 36; https://doi.org/10.3390/pharmaceutics10010036 - 20 Mar 2018
Cited by 38 | Viewed by 44469
Abstract
The long-term use of prescription and over-the-counter drugs can induce subclinical and clinically relevant micronutrient deficiencies, which may develop gradually over months or even years. Given the large number of medications currently available, the number of research studies examining potential drug–nutrient interactions is [...] Read more.
The long-term use of prescription and over-the-counter drugs can induce subclinical and clinically relevant micronutrient deficiencies, which may develop gradually over months or even years. Given the large number of medications currently available, the number of research studies examining potential drug–nutrient interactions is quite limited. A comprehensive, updated review of the potential drug–nutrient interactions with chronic use of the most often prescribed medications for commonly diagnosed conditions among the general U.S. adult population is presented. For the majority of the interactions described in this paper, more high-quality intervention trials are needed to better understand their clinical importance and potential consequences. A number of these studies have identified potential risk factors that may make certain populations more susceptible, but guidelines on how to best manage and/or prevent drug-induced nutrient inadequacies are lacking. Although widespread supplementation is not currently recommended, it is important to ensure at-risk patients reach their recommended intakes for vitamins and minerals. In conjunction with an overall healthy diet, appropriate dietary supplementation may be a practical and efficacious way to maintain or improve micronutrient status in patients at risk of deficiencies, such as those taking medications known to compromise nutritional status. The summary evidence presented in this review will help inform future research efforts and, ultimately, guide recommendations for patient care. Full article
Show Figures

Graphical abstract

34 pages, 1211 KiB  
Review
Ashwagandha (Withania somnifera)—Current Research on the Health-Promoting Activities: A Narrative Review
by Paulina Mikulska, Marta Malinowska, Miłosz Ignacyk, Paweł Szustowski, Joanna Nowak, Karolina Pesta, Monika Szeląg, Damian Szklanny, Eliza Judasz, Gabriela Kaczmarek, Ovinuchi Prince Ejiohuo, Magdalena Paczkowska-Walendowska, Anna Gościniak and Judyta Cielecka-Piontek
Pharmaceutics 2023, 15(4), 1057; https://doi.org/10.3390/pharmaceutics15041057 - 24 Mar 2023
Cited by 29 | Viewed by 44247
Abstract
In recent years, there has been a significant surge in reports on the health-promoting benefits of winter cherry (Withania somnifera), also known as Ashwagandha. Its current research covers many aspects of human health, including neuroprotective, sedative and adaptogenic effects and effects on sleep. [...] Read more.
In recent years, there has been a significant surge in reports on the health-promoting benefits of winter cherry (Withania somnifera), also known as Ashwagandha. Its current research covers many aspects of human health, including neuroprotective, sedative and adaptogenic effects and effects on sleep. There are also reports of anti-inflammatory, antimicrobial, cardioprotective and anti-diabetic properties. Furthermore, there are reports of reproductive outcomes and tarcicidal hormone action. This growing body of research on Ashwagandha highlights its potential as a valuable natural remedy for many health concerns. This narrative review delves into the most recent findings and provides a comprehensive overview of the current understanding of ashwagandha’s potential uses and any known safety concerns and contraindications. Full article
(This article belongs to the Special Issue Pharmaceutical Applications of Plant Extracts)
Show Figures

Figure 1

17 pages, 2827 KiB  
Review
Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems
by M. Danaei, M. Dehghankhold, S. Ataei, F. Hasanzadeh Davarani, R. Javanmard, A. Dokhani, S. Khorasani and M. R. Mozafari
Pharmaceutics 2018, 10(2), 57; https://doi.org/10.3390/pharmaceutics10020057 - 18 May 2018
Cited by 2427 | Viewed by 43149
Abstract
Lipid-based drug delivery systems, or lipidic carriers, are being extensively employed to enhance the bioavailability of poorly-soluble drugs. They have the ability to incorporate both lipophilic and hydrophilic molecules and protecting them against degradation in vitro and in vivo. There is a number [...] Read more.
Lipid-based drug delivery systems, or lipidic carriers, are being extensively employed to enhance the bioavailability of poorly-soluble drugs. They have the ability to incorporate both lipophilic and hydrophilic molecules and protecting them against degradation in vitro and in vivo. There is a number of physical attributes of lipid-based nanocarriers that determine their safety, stability, efficacy, as well as their in vitro and in vivo behaviour. These include average particle size/diameter and the polydispersity index (PDI), which is an indication of their quality with respect to the size distribution. The suitability of nanocarrier formulations for a particular route of drug administration depends on their average diameter, PDI and size stability, among other parameters. Controlling and validating these parameters are of key importance for the effective clinical applications of nanocarrier formulations. This review highlights the significance of size and PDI in the successful design, formulation and development of nanosystems for pharmaceutical, nutraceutical and other applications. Liposomes, nanoliposomes, vesicular phospholipid gels, solid lipid nanoparticles, transfersomes and tocosomes are presented as frequently-used lipidic drug carriers. The advantages and limitations of a range of available analytical techniques used to characterize lipidic nanocarrier formulations are also covered. Full article
(This article belongs to the Special Issue Lipid-Based Dosage Form)
Show Figures

Graphical abstract

---

Figure 2

---

Figure 3

438 KiB  
Review
The Pharmacokinetics and Pharmacodynamics of Iron Preparations
by Peter Geisser and Susanna Burckhardt
Pharmaceutics 2011, 3(1), 12-33; https://doi.org/10.3390/pharmaceutics3010012 - 4 Jan 2011
Cited by 176 | Viewed by 43121
Abstract
Standard approaches are not appropriate when assessing pharmacokinetics of iron supplements due to the ubiquity of endogenous iron, its compartmentalized sites of action, and the complexity of the iron metabolism. The primary site of action of iron is the erythrocyte, and, in contrast [...] Read more.
Standard approaches are not appropriate when assessing pharmacokinetics of iron supplements due to the ubiquity of endogenous iron, its compartmentalized sites of action, and the complexity of the iron metabolism. The primary site of action of iron is the erythrocyte, and, in contrast to conventional drugs, no drug-receptor interaction takes place. Notably, the process of erythropoiesis, i.e., formation of new erythrocytes, takes 3−4 weeks. Accordingly, serum iron concentration and area under the curve (AUC) are clinically irrelevant for assessing iron utilization. Iron can be administered intravenously in the form of polynuclear iron(III)-hydroxide complexes with carbohydrate ligands or orally as iron(II) (ferrous) salts or iron(III) (ferric) complexes. Several approaches have been employed to study the pharmacodynamics of iron after oral administration. Quantification of iron uptake from radiolabeled preparations by the whole body or the erythrocytes is optimal, but alternatively total iron transfer can be calculated based on known elimination rates and the intrinsic reactivity of individual preparations. Degradation kinetics, and thus the safety, of parenteral iron preparations are directly related to the molecular weight and the stability of the complex. High oral iron doses or rapid release of iron from intravenous iron preparations can saturate the iron transport system, resulting in oxidative stress with adverse clinical and subclinical consequences. Appropriate pharmacokinetics and pharmacodynamics analyses will greatly assist our understanding of the likely contribution of novel preparations to the management of anemia. Full article
Show Figures

---

---

---

---

---

2339 KiB  
Review
Liposomal Formulations in Clinical Use: An Updated Review
by Upendra Bulbake, Sindhu Doppalapudi, Nagavendra Kommineni and Wahid Khan
Pharmaceutics 2017, 9(2), 12; https://doi.org/10.3390/pharmaceutics9020012 - 27 Mar 2017
Cited by 1487 | Viewed by 41898
Abstract
Liposomes are the first nano drug delivery systems that have been successfully translated into real-time clinical applications. These closed bilayer phospholipid vesicles have witnessed many technical advances in recent years since their first development in 1965. Delivery of therapeutics by liposomes alters their [...] Read more.
Liposomes are the first nano drug delivery systems that have been successfully translated into real-time clinical applications. These closed bilayer phospholipid vesicles have witnessed many technical advances in recent years since their first development in 1965. Delivery of therapeutics by liposomes alters their biodistribution profile, which further enhances the therapeutic index of various drugs. Extensive research is being carried out using these nano drug delivery systems in diverse areas including the delivery of anti-cancer, anti-fungal, anti-inflammatory drugs and therapeutic genes. The significant contribution of liposomes as drug delivery systems in the healthcare sector is known by many clinical products, e.g., Doxil®, Ambisome®, DepoDur™, etc. This review provides a detailed update on liposomal technologies e.g., DepoFoam™ Technology, Stealth technology, etc., the formulation aspects of clinically used products and ongoing clinical trials on liposomes. Full article
(This article belongs to the Special Issue Nanotechnology in Medical Therapeutic Formulations)
Show Figures

Figure 1

---

Figure 3

---

Figure 4

---

Figure 5

---

Figure 6

10 pages, 1351 KiB  
Article
Franz Diffusion Cell Approach for Pre-Formulation Characterisation of Ketoprofen Semi-Solid Dosage Forms
by Constain H. Salamanca, Alvaro Barrera-Ocampo, Juan C. Lasso, Nathalia Camacho and Cristhian J. Yarce
Pharmaceutics 2018, 10(3), 148; https://doi.org/10.3390/pharmaceutics10030148 - 5 Sep 2018
Cited by 116 | Viewed by 37620
Abstract
This study aimed to evaluate and compare, using the methodology of Franz diffusion cells, the ketoprofen (KTP) releasing profiles of two formulations: A gel and a conventional suspension. The second aim was to show that this methodology might be easily applied for the [...] Read more.
This study aimed to evaluate and compare, using the methodology of Franz diffusion cells, the ketoprofen (KTP) releasing profiles of two formulations: A gel and a conventional suspension. The second aim was to show that this methodology might be easily applied for the development of semi-solid prototypes and claim proof in pre-formulation stages. Drug release analysis was carried out under physiological conditions (pH: 5.6 to 7.4; ionic strength 0.15 M; at 37 °C) for 24 h. Three independent vertical Franz cells were used with a nominal volume of the acceptor compartment of 125 mL and a diffusion area of 2.5 cm2. Additionally, two different membranes were evaluated: A generic type (regenerated cellulose) and a transdermal simulation type (Strat-M®). The KTP permeation profiles demonstrated that depending on the membrane type and the vehicle used, the permeation is strongly affected. High permeation efficiencies were obtained for the gel formulation, and the opposite effect was observed for the suspension formulation. Moreover, the permeation studies using Strat-M membranes represent a reproducible methodology, which is easy to implement for pre-formulation stage or performance evaluation of semi-solid pharmaceutical products for topical or transdermal administration. Full article
Show Figures

Graphical abstract

30 pages, 2285 KiB  
Review
Skin Wound Healing Process and New Emerging Technologies for Skin Wound Care and Regeneration
by Erika Maria Tottoli, Rossella Dorati, Ida Genta, Enrica Chiesa, Silvia Pisani and Bice Conti
Pharmaceutics 2020, 12(8), 735; https://doi.org/10.3390/pharmaceutics12080735 - 5 Aug 2020
Cited by 588 | Viewed by 37530
Abstract
Skin wound healing shows an extraordinary cellular function mechanism, unique in nature and involving the interaction of several cells, growth factors and cytokines. Physiological wound healing restores tissue integrity, but in many cases the process is limited to wound repair. Ongoing studies aim [...] Read more.
Skin wound healing shows an extraordinary cellular function mechanism, unique in nature and involving the interaction of several cells, growth factors and cytokines. Physiological wound healing restores tissue integrity, but in many cases the process is limited to wound repair. Ongoing studies aim to obtain more effective wound therapies with the intention of reducing inpatient costs, providing long-term relief and effective scar healing. The main goal of this comprehensive review is to focus on the progress in wound medication and how it has evolved over the years. The main complications related to the healing process and the clinical management of chronic wounds are described in the review. Moreover, advanced treatment strategies for skin regeneration and experimental techniques for cellular engineering and skin tissue engineering are addressed. Emerging skin regeneration techniques involving scaffolds activated with growth factors, bioactive molecules and genetically modified cells are exploited to overcome wound healing technology limitations and to implement personalized therapy design. Full article
(This article belongs to the Special Issue Advances in Wound Dressings and Materials)
Show Figures

Graphical abstract

---

Figure 2

---

Figure 3

---

Figure 4

---

Figure 5

3281 KiB  
Review
Encapsulation of Natural Polyphenolic Compounds; a Review
by Aude Munin and Florence Edwards-Lévy
Pharmaceutics 2011, 3(4), 793-829; https://doi.org/10.3390/pharmaceutics3040793 - 4 Nov 2011
Cited by 672 | Viewed by 35264
Abstract
Natural polyphenols are valuable compounds possessing scavenging properties towards radical oxygen species, and complexing properties towards proteins. These abilities make polyphenols interesting for the treatment of various diseases like inflammation or cancer, but also for anti-ageing purposes in cosmetic formulations, or for nutraceutical [...] Read more.
Natural polyphenols are valuable compounds possessing scavenging properties towards radical oxygen species, and complexing properties towards proteins. These abilities make polyphenols interesting for the treatment of various diseases like inflammation or cancer, but also for anti-ageing purposes in cosmetic formulations, or for nutraceutical applications. Unfortunately, these properties are also responsible for a lack in long-term stability, making these natural compounds very sensitive to light and heat. Moreover, polyphenols often present a poor biodisponibility mainly due to low water solubility. Lastly, many of these molecules possess a very astringent and bitter taste, which limits their use in food or in oral medications. To circumvent these drawbacks, delivery systems have been developed, and among them, encapsulation would appear to be a promising approach. Many encapsulation methods are described in the literature, among which some have been successfully applied to plant polyphenols. In this review, after a general presentation of the large chemical family of plant polyphenols and of their main chemical and biological properties, encapsulation processes applied to polyphenols are classified into physical, physico-chemical, chemical methods, and other connected stabilization methods. After a brief description of each encapsulation process, their applications to polyphenol encapsulation for pharmaceutical, food or cosmetological purposes are presented. Full article
(This article belongs to the Special Issue Microencapsulation Technology Applied to Pharmaceutics)
Show Figures

---

---

---

---

---

---

---

3307 KiB  
Review
Transdermal Drug Delivery: Innovative Pharmaceutical Developments Based on Disruption of the Barrier Properties of the Stratum Corneum
by Ahlam Zaid Alkilani, Maelíosa T. C. McCrudden and Ryan F. Donnelly
Pharmaceutics 2015, 7(4), 438-470; https://doi.org/10.3390/pharmaceutics7040438 - 22 Oct 2015
Cited by 703 | Viewed by 35263
Abstract
The skin offers an accessible and convenient site for the administration of medications. To this end, the field of transdermal drug delivery, aimed at developing safe and efficacious means of delivering medications across the skin, has in the past and continues to garner [...] Read more.
The skin offers an accessible and convenient site for the administration of medications. To this end, the field of transdermal drug delivery, aimed at developing safe and efficacious means of delivering medications across the skin, has in the past and continues to garner much time and investment with the continuous advancement of new and innovative approaches. This review details the progress and current status of the transdermal drug delivery field and describes numerous pharmaceutical developments which have been employed to overcome limitations associated with skin delivery systems. Advantages and disadvantages of the various approaches are detailed, commercially marketed products are highlighted and particular attention is paid to the emerging field of microneedle technologies. Full article
(This article belongs to the Special Issue Microneedle Patches: Developing Strategies for Delivery)
Show Figures

Graphical abstract

---

Figure 2

---

Figure 3

---

Figure 4

---

Figure 5

---

Figure 6

---

Figure 7

---

Figure 8

---

Figure 9

---

Figure 10

---

Figure 11

---

Figure 12

---

Figure 13

---

Figure 14

---

Figure 15

---

Figure 16

832 KiB  
Review
Cell Migration and Invasion Assays as Tools for Drug Discovery
by Keren I. Hulkower and Renee L. Herber
Pharmaceutics 2011, 3(1), 107-124; https://doi.org/10.3390/pharmaceutics3010107 - 11 Mar 2011
Cited by 293 | Viewed by 33129
Abstract
Cell migration and invasion are processes that offer rich targets for intervention in key physiologic and pathologic phenomena such as wound healing and cancer metastasis. With the advent of high-throughput and high content imaging systems, there has been a movement towards the use [...] Read more.
Cell migration and invasion are processes that offer rich targets for intervention in key physiologic and pathologic phenomena such as wound healing and cancer metastasis. With the advent of high-throughput and high content imaging systems, there has been a movement towards the use of physiologically relevant cell-based assays earlier in the testing paradigm. This allows more effective identification of lead compounds and recognition of undesirable effects sooner in the drug discovery screening process. This article will review the effective use of several principle formats for studying cell motility: scratch assays, transmembrane assays, microfluidic devices and cell exclusion zone assays. Full article
Show Figures

---

---

---

1683 KiB  
Review
An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery
by Munawar A. Mohammed, Jaweria T. M. Syeda, Kishor M. Wasan and Ellen K. Wasan
Pharmaceutics 2017, 9(4), 53; https://doi.org/10.3390/pharmaceutics9040053 - 20 Nov 2017
Cited by 958 | Viewed by 30930
Abstract
The focus of this review is to provide an overview of the chitosan based nanoparticles for various non-parenteral applications and also to put a spotlight on current research including sustained release and mucoadhesive chitosan dosage forms. Chitosan is a biodegradable, biocompatible polymer regarded [...] Read more.
The focus of this review is to provide an overview of the chitosan based nanoparticles for various non-parenteral applications and also to put a spotlight on current research including sustained release and mucoadhesive chitosan dosage forms. Chitosan is a biodegradable, biocompatible polymer regarded as safe for human dietary use and approved for wound dressing applications. Chitosan has been used as a carrier in polymeric nanoparticles for drug delivery through various routes of administration. Chitosan has chemical functional groups that can be modified to achieve specific goals, making it a polymer with a tremendous range of potential applications. Nanoparticles (NP) prepared with chitosan and chitosan derivatives typically possess a positive surface charge and mucoadhesive properties such that can adhere to mucus membranes and release the drug payload in a sustained release manner. Chitosan-based NP have various applications in non-parenteral drug delivery for the treatment of cancer, gastrointestinal diseases, pulmonary diseases, drug delivery to the brain and ocular infections which will be exemplified in this review. Chitosan shows low toxicity both in vitro and some in vivo models. This review explores recent research on chitosan based NP for non-parenteral drug delivery, chitosan properties, modification, toxicity, pharmacokinetics and preclinical studies. Full article
(This article belongs to the Special Issue Pharmacokinetics and Drug Metabolism in Canada: The Current Landscape)
Show Figures

Graphical abstract

---

Figure 2

---

Figure 3

---

Figure 4

---

Figure 5

49 pages, 8771 KiB  
Review
Methods of Liposomes Preparation: Formation and Control Factors of Versatile Nanocarriers for Biomedical and Nanomedicine Application
by Domenico Lombardo and Mikhail A. Kiselev
Pharmaceutics 2022, 14(3), 543; https://doi.org/10.3390/pharmaceutics14030543 - 28 Feb 2022
Cited by 146 | Viewed by 30564
Abstract
Liposomes are nano-sized spherical vesicles composed of an aqueous core surrounded by one (or more) phospholipid bilayer shells. Owing to their high biocompatibility, chemical composition variability, and ease of preparation, as well as their large variety of structural properties, liposomes have been employed [...] Read more.
Liposomes are nano-sized spherical vesicles composed of an aqueous core surrounded by one (or more) phospholipid bilayer shells. Owing to their high biocompatibility, chemical composition variability, and ease of preparation, as well as their large variety of structural properties, liposomes have been employed in a large variety of nanomedicine and biomedical applications, including nanocarriers for drug delivery, in nutraceutical fields, for immunoassays, clinical diagnostics, tissue engineering, and theranostics formulations. Particularly important is the role of liposomes in drug-delivery applications, as they improve the performance of the encapsulated drugs, reducing side effects and toxicity by enhancing its in vitro- and in vivo-controlled delivery and activity. These applications stimulated a great effort for the scale-up of the formation processes in view of suitable industrial development. Despite the improvements of conventional approaches and the development of novel routes of liposome preparation, their intrinsic sensitivity to mechanical and chemical actions is responsible for some critical issues connected with a limited colloidal stability and reduced entrapment efficiency of cargo molecules. This article analyzes the main features of the formation and fabrication techniques of liposome nanocarriers, with a special focus on the structure, parameters, and the critical factors that influence the development of a suitable and stable formulation. Recent developments and new methods for liposome preparation are also discussed, with the objective of updating the reader and providing future directions for research and development. Full article
Show Figures

Figure 1

---

Figure 3

---

Figure 4

---

Figure 5

---

Figure 6

---

Figure 7

---

Figure 8

---

Figure 9

---

Figure 10

---

Figure 11

---

Figure 12

---

Figure 13

---

Figure 14

---

Figure 15

---

Figure 16

---

Figure 17

---

Figure 18

---

Figure 19

46 pages, 39479 KiB  
Review
Artificial Intelligence in Pharmaceutical Technology and Drug Delivery Design
by Lalitkumar K. Vora, Amol D. Gholap, Keshava Jetha, Raghu Raj Singh Thakur, Hetvi K. Solanki and Vivek P. Chavda
Pharmaceutics 2023, 15(7), 1916; https://doi.org/10.3390/pharmaceutics15071916 - 10 Jul 2023
Cited by 65 | Viewed by 29579
Abstract
Artificial intelligence (AI) has emerged as a powerful tool that harnesses anthropomorphic knowledge and provides expedited solutions to complex challenges. Remarkable advancements in AI technology and machine learning present a transformative opportunity in the drug discovery, formulation, and testing of pharmaceutical dosage forms. [...] Read more.
Artificial intelligence (AI) has emerged as a powerful tool that harnesses anthropomorphic knowledge and provides expedited solutions to complex challenges. Remarkable advancements in AI technology and machine learning present a transformative opportunity in the drug discovery, formulation, and testing of pharmaceutical dosage forms. By utilizing AI algorithms that analyze extensive biological data, including genomics and proteomics, researchers can identify disease-associated targets and predict their interactions with potential drug candidates. This enables a more efficient and targeted approach to drug discovery, thereby increasing the likelihood of successful drug approvals. Furthermore, AI can contribute to reducing development costs by optimizing research and development processes. Machine learning algorithms assist in experimental design and can predict the pharmacokinetics and toxicity of drug candidates. This capability enables the prioritization and optimization of lead compounds, reducing the need for extensive and costly animal testing. Personalized medicine approaches can be facilitated through AI algorithms that analyze real-world patient data, leading to more effective treatment outcomes and improved patient adherence. This comprehensive review explores the wide-ranging applications of AI in drug discovery, drug delivery dosage form designs, process optimization, testing, and pharmacokinetics/pharmacodynamics (PK/PD) studies. This review provides an overview of various AI-based approaches utilized in pharmaceutical technology, highlighting their benefits and drawbacks. Nevertheless, the continued investment in and exploration of AI in the pharmaceutical industry offer exciting prospects for enhancing drug development processes and patient care. Full article
(This article belongs to the Special Issue Model-Informed Drug Discovery and Development, 2nd Edition)
Show Figures

Figure 1

---

Figure 3

---

Figure 4

---

Figure 5

---

Figure 6

---

Figure 7

Back to TopTop -