Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = GSDMs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2050 KiB  
Review
Research Progress of Pyroptosis in Diabetic Kidney Disease
by Qingqing Fan, Rongxuan Li, Huiting Wei, Weiyue Xue, Xiang Li, Ziyao Xia, Le Zhao, Ye Qiu and Di Cui
Int. J. Mol. Sci. 2024, 25(13), 7130; https://doi.org/10.3390/ijms25137130 (registering DOI) - 28 Jun 2024
Viewed by 144
Abstract
Pyroptosis, known as one typical mode of programmed cell death, is generally characterized by the cleaved gasdermin family (GSDMs) forming pores in the cell membrane and inducing cell rupture, and the activation of aspartate-specific proteases (caspases) has also been found during this process. [...] Read more.
Pyroptosis, known as one typical mode of programmed cell death, is generally characterized by the cleaved gasdermin family (GSDMs) forming pores in the cell membrane and inducing cell rupture, and the activation of aspartate-specific proteases (caspases) has also been found during this process. Diabetic Kidney Disease (DKD) is caused by the complication of diabetes in the kidney, and the most important kidney’s function, Glomerular Filtration Rate (GFR), happens to drop to less than 90% of its usual and even lead to kidney failure in severe cases. The persistent inflammatory state induced by high blood glucose implies the key pathology of DKD, and growing evidence shows that pyroptosis serves as a significant contributor to this chronic immune-mediated inflammatory disorder. Currently, the expanded discovery of GSDMs, pyroptosis, and its association with innate immunity has been more attractive, and overwhelming research is needed to sort out the implication of pyroptosis in DKD pathology. In this review, we comb both classical studies and newly founds on pyroptosis, prick off the novel awakening of pyroptosis in DKD, and center on the significance of pyroptosis in DKD treatment, aiming to provide new research targets and treatment strategies on DKD. Full article
(This article belongs to the Section Biochemistry)
14 pages, 4485 KiB  
Article
Chemical Hypoxia Induces Pyroptosis in Neuronal Cells by Caspase-Dependent Gasdermin Activation
by Chan Ho Park, Jun Young Park and Won Gil Cho
Int. J. Mol. Sci. 2024, 25(4), 2185; https://doi.org/10.3390/ijms25042185 - 11 Feb 2024
Viewed by 986
Abstract
Hypoxia-induced neuronal death is a major cause of neurodegenerative diseases. Pyroptosis is a type of inflammatory programmed cell death mediated by elevated intracellular levels of reactive oxygen species (ROS). Therefore, we hypothesized that hypoxia-induced ROS may trigger pyroptosis via caspase-dependent gasdermin (GSDM) activation [...] Read more.
Hypoxia-induced neuronal death is a major cause of neurodegenerative diseases. Pyroptosis is a type of inflammatory programmed cell death mediated by elevated intracellular levels of reactive oxygen species (ROS). Therefore, we hypothesized that hypoxia-induced ROS may trigger pyroptosis via caspase-dependent gasdermin (GSDM) activation in neuronal cells. To test this, we exposed SH-SY5Y neuronal cells to cobalt chloride (CoCl2) to trigger hypoxia and then evaluated the cellular and molecular responses to hypoxic conditions. Our data revealed that CoCl2 induced cell growth inhibition and the expression of hypoxia-inducible factor-1α in SH-SY5Y cells. Exposure to CoCl2 elicits excessive accumulation of cytosolic and mitochondrial ROS in SH-SY5Y cells. CoCl2-induced hypoxia not only activated the intrinsic (caspases-3, -7, and -9) apoptotic pathway but also induced caspase-3/GSDME-dependent and NLRP3/caspase-1/GSDMD-mediated pyroptosis in SH-SY5Y cells. Importantly, inhibition of caspase-3 and -1 using selective inhibitors ameliorated pyroptotic cell death and downregulated GSDM protein expression. Additionally, treatment with a ROS scavenger significantly suppressed caspase- and pyroptosis-related proteins in CoCl2-treated SH-SY5Y cells. Our findings indicate that hypoxia-mediated ROS production plays an important role in the activation of both apoptosis and pyroptosis in SH-SY5Y neuronal cells, thus providing a potential therapeutic strategy for hypoxia-related neurological diseases. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

---

Figure 3

---

Figure 4

---

Figure 5

---

Figure 6

---

Figure 7

---

Figure 8

14 pages, 1628 KiB  
Review
Pathological and Therapeutical Implications of Pyroptosis in Psoriasis and Hidradenitis Suppurativa: A Narrative Review
by Piotr K. Krajewski, Maria Tsoukas and Jacek C. Szepietowski
Curr. Issues Mol. Biol. 2024, 46(1), 663-676; https://doi.org/10.3390/cimb46010043 - 11 Jan 2024
Viewed by 1511
Abstract
This manuscript explores the role of pyroptosis, an inflammatory programmed cell death, in the pathogenesis of two chronic dermatoses, psoriasis and hidradenitis suppurativa (HS). The diseases, though clinically diverse, share common pathogenetic pathways involving the unbalanced interaction between the adaptive and innate immune [...] Read more.
This manuscript explores the role of pyroptosis, an inflammatory programmed cell death, in the pathogenesis of two chronic dermatoses, psoriasis and hidradenitis suppurativa (HS). The diseases, though clinically diverse, share common pathogenetic pathways involving the unbalanced interaction between the adaptive and innate immune systems. This review focuses on the molecular changes in psoriatic and HS skin, emphasizing the activation of dendritic cells, secretion of interleukins (IL-17, IL-22, and TNF-α), and the involvement of inflammasomes, particularly NLRP3. This manuscript discusses the role of caspases, especially caspase-1, in driving pyroptosis and highlights the family of gasdermins (GSDMs) as key players in the formation of pores leading to cell rupture and the release of proinflammatory signals. This study delves into the potential therapeutic implications of targeting pyroptosis in psoriasis and HS, examining existing medications like biologics and Janus kinase inhibitors. It also reviews the current limitations and challenges in developing therapies that selectively target pyroptosis. Additionally, the manuscript explores the role of pyroptosis in various inflammatory disorders associated with psoriasis and HS, such as inflammatory bowel disease, diabetes mellitus, and cardiovascular disorders. The review concludes by emphasizing the need for further research to fully elucidate the pathomechanisms of these dermatoses and develop effective, targeted therapies. Full article
(This article belongs to the Special Issue Molecular Research in Chronic Dermatoses)
Show Figures

Figure 1

23 pages, 6316 KiB  
Article
The Inflammasome-Dependent Dysfunction and Death of Retinal Ganglion Cells after Repetitive Intraocular Pressure Spikes
by Markus Spurlock, Weijun An, Galina Reshetnikova, Rong Wen, Hua Wang, Michelle Braha, Gabriela Solis, Stefan Kurtenbach, Orlando J. Galindez, Juan Pablo de Rivero Vaccari, Tsung-Han Chou, Vittorio Porciatti and Valery I. Shestopalov
Cells 2023, 12(22), 2626; https://doi.org/10.3390/cells12222626 - 15 Nov 2023
Viewed by 1755
Abstract
The dysfunction and selective loss of retinal ganglion cells (RGCs) is a known cause of vision loss in glaucoma and other neuropathies, where ocular hypertension (OHT) is the major risk factor. We investigated the impact of transient non-ischemic OHT spikes (spOHT) on RGC [...] Read more.
The dysfunction and selective loss of retinal ganglion cells (RGCs) is a known cause of vision loss in glaucoma and other neuropathies, where ocular hypertension (OHT) is the major risk factor. We investigated the impact of transient non-ischemic OHT spikes (spOHT) on RGC function and viability in vivo to identify cellular pathways linking low-grade repetitive mechanical stress to RGC pathology. We found that repetitive spOHT had an unexpectedly high impact on intraocular homeostasis and RGC viability, while exposure to steady OHT (stOHT) of a similar intensity and duration failed to induce pathology. The repetitive spOHT induced the rapid activation of the inflammasome, marked by the upregulation of NLRP1, NLRP3, AIM2, caspases -1, -3/7, -8, and Gasdermin D (GSDMD), and the release of interleukin-1β (IL-1β) and other cytokines into the vitreous. Similar effects were also detected after 5 weeks of exposure to chronic OHT in an induced glaucoma model. The onset of these immune responses in both spOHT and glaucoma models preceded a 50% deficit in pattern electroretinogram (PERG) amplitude and a significant loss of RGCs 7 days post-injury. The inactivation of inflammasome complexes in Nlrp1−/−, Casp1−/−, and GsdmD−/− knockout animals significantly suppressed the spOHT-induced inflammatory response and protected RGCs. Our results demonstrate that mechanical stress produced by acute repetitive spOHT or chronic OHT is mechanistically linked to inflammasome activation, which leads to RGC dysfunction and death. Full article
(This article belongs to the Special Issue Injury, Neurodegeneration, and Regeneration of Retinal Ganglion Cells)
Show Figures

Graphical abstract

---

Figure 2

---

Figure 3

---

Figure 4

---

Figure 5

---

Figure 6

---

Figure 7

---

Figure 8

---

Figure 9

---

Figure 10

18 pages, 3439 KiB  
Review
Research Progress of Pyroptosis in Fatty Liver Disease
by Rongxuan Li, Weiyue Xue, Huiting Wei, Qingqing Fan, Xiang Li, Ye Qiu and Di Cui
Int. J. Mol. Sci. 2023, 24(17), 13065; https://doi.org/10.3390/ijms241713065 - 22 Aug 2023
Cited by 6 | Viewed by 1602
Abstract
Fatty liver disease (FLD) is a clinical and pathological syndrome characterized by excessive fat deposition and even steatosis in hepatocytes. It has been proven that liver inflammation induced by fat and its derivatives are involved in the pathogenesis of FLD, while the precise [...] Read more.
Fatty liver disease (FLD) is a clinical and pathological syndrome characterized by excessive fat deposition and even steatosis in hepatocytes. It has been proven that liver inflammation induced by fat and its derivatives are involved in the pathogenesis of FLD, while the precise mechanism still remains poorly understood. Pyroptosis is programmed inflammatory cell death driving cell swelling and membrane rupture. Pyroptosis is initiated by the activation of inflammasomes and caspases, which further cleaves and activates various gasdermins, leading to pores forming on the cell membrane and the release of pro-inflammatory factors such as interleukin (IL)-1β and IL-18. Recent studies demonstrate that pyroptosis occurs in hepatocytes, and inhibiting pyroptosis could effectively reduce fat deposition in the liver and could ameliorate inflammation from FLD, attracting our prime focus on the role of pyroptosis in FLD. In this manuscript, we reviewed the current understanding of pyroptosis in FLD development, aiming to provide new insights and potential research targets for the clinical diagnosis and intervention of FLD. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

13 pages, 5757 KiB  
Article
Upregulation of TLR4-Dependent ATP Production Is Critical for Glaesserella parasuis LPS-Mediated Inflammation
by Fei Liu, Yidan Gao, Jian Jiao, Yuyu Zhang, Jianda Li, Luogang Ding, Lin Zhang, Zhi Chen, Xiangbin Song, Guiwen Yang, Jiang Yu and Jiaqiang Wu
Cells 2023, 12(5), 751; https://doi.org/10.3390/cells12050751 - 26 Feb 2023
Cited by 2 | Viewed by 1894
Abstract
Glaesserella parasuis (G. parasuis), an important pathogenic bacterium, cause Glässer’s disease, and has resulted in tremendous economic losses to the global swine industry. G. parasuis infection causes typical acute systemic inflammation. However, the molecular details of how the host modulates the [...] Read more.
Glaesserella parasuis (G. parasuis), an important pathogenic bacterium, cause Glässer’s disease, and has resulted in tremendous economic losses to the global swine industry. G. parasuis infection causes typical acute systemic inflammation. However, the molecular details of how the host modulates the acute inflammatory response induced by G. parasuis are largely unknown. In this study, we found that G. parasuis LZ and LPS both enhanced the mortality of PAM cells, and at the same time, the level of ATP was enhanced. LPS treatment significantly increased the expressions of IL-1β, P2X7R, NLRP3, NF-κB, p-NF-κB, and GSDMD, leading to pyroptosis. Furthermore, these proteins’ expression was enhanced following extracellular ATP further stimulation. When reduced the production of P2X7R, NF-κB-NLRP3-GSDMS inflammasome signaling pathway was inhibited, and the mortality of cells was reduced. MCC950 treatment repressed the formation of inflammasome and reduced mortality. Further exploration found that the knockdown of TLR4 significantly reduced ATP content and cell mortality, and inhibited the expression of p-NF-κB and NLRP3. These findings suggested upregulation of TLR4-dependent ATP production is critical for G. parasuis LPS-mediated inflammation, provided new insights into the molecular pathways underlying the inflammatory response induced by G. parasuis, and offered a fresh perspective on therapeutic strategies. Full article
(This article belongs to the Section Cellular Pathology)
Show Figures

Graphical abstract

---

Figure 2

---

Figure 3

---

Figure 4

---

Figure 5

16 pages, 1002 KiB  
Review
Pyroptosis in Periprosthetic Osteolysis
by Jian Yin, Zhaoyang Yin, Peng Lai, Xinhui Liu and Jinzhong Ma
Biomolecules 2022, 12(12), 1733; https://doi.org/10.3390/biom12121733 - 23 Nov 2022
Cited by 11 | Viewed by 2363
Abstract
Periprosthetic osteolysis (PPO) along with aseptic loosening (AL) caused by wear particles after artificial joint replacement is the key factor in surgical failure and subsequent revision surgery, however, the precise molecular mechanism underlying PPO remains unclear. Aseptic inflammation triggered by metal particles, resulting [...] Read more.
Periprosthetic osteolysis (PPO) along with aseptic loosening (AL) caused by wear particles after artificial joint replacement is the key factor in surgical failure and subsequent revision surgery, however, the precise molecular mechanism underlying PPO remains unclear. Aseptic inflammation triggered by metal particles, resulting in the imbalance between bone formation by osteoblasts and bone resorption by osteoclasts may be the decisive factor. Pyroptosis is a new pro-inflammatory pattern of regulated cell death (RCD), mainly mediated by gasdermins (GSDMs) family, among which GSDMD is the best characterized. Recent evidence indicates that activation of NLRP3 inflammasomes and pyroptosis play a pivotal role in the pathological process of PPO. Here, we review the pathological process of PPO, the molecular mechanism of pyroptosis and the interventions to inhibit the inflammation and pyroptosis of different cells during the PPO. Conclusively, this review provides theoretical support for the search for new strategies and new targets for the treatment of PPO by inhibiting pyroptosis and inflammation. Full article
(This article belongs to the Special Issue Recent Advances in Skeletal Development and Diseases)
Show Figures

Figure 1

12 pages, 1116 KiB  
Review
Pyroptosis and Insulin Resistance in Metabolic Organs
by Huiting Wei and Di Cui
Int. J. Mol. Sci. 2022, 23(19), 11638; https://doi.org/10.3390/ijms231911638 - 1 Oct 2022
Cited by 5 | Viewed by 2245
Abstract
Skeletal muscle serves as the optimal effective organ to balance glucose homeostasis, but insulin resistance (IR) in skeletal muscle breaks this balance by impeding glucose uptake and causes metabolic disorders. IR in skeletal muscle is caused by multiple factors, and it has been [...] Read more.
Skeletal muscle serves as the optimal effective organ to balance glucose homeostasis, but insulin resistance (IR) in skeletal muscle breaks this balance by impeding glucose uptake and causes metabolic disorders. IR in skeletal muscle is caused by multiple factors, and it has been reported that systemic low-grade inflammation is related to skeletal muscle IR, though its molecular mechanisms need to be ulteriorly studied. Pyroptosis is a novel inflammatory-mediated type of cell death. It has recently been reported that pyroptosis is associated with a decline in insulin sensitivity in skeletal muscle. The appropriate occurrence of pyroptosis positively eliminates pathogenic factors, whereas its excessive activation may aggravate inflammatory responses and expedite disease progression. The relationship between pyroptosis and IR in skeletal muscle and its underlined mechanism need to be further illustrated. The role of pyroptosis during the process of IR alleviation induced by non-drug interventions, such as exercise, also needs to be clarified. In this paper, we review and describe the molecular mechanisms of pyroptosis and further comb the roles of its relevant key factors in skeletal muscle IR, aiming to propose a novel theoretical basis for the relationship between pyroptosis and muscle IR and provide new research targets for the improvement of IR-related diseases. Full article
(This article belongs to the Special Issue Oxidative Stress and Skeletal Muscle Function)
Show Figures

Figure 1

13 pages, 703 KiB  
Review
The Role of Pyroptosis and Autophagy in Ischemia Reperfusion Injury
by Huijie Zhao, Yihan Yang, Xinya Si, Huiyang Liu and Honggang Wang
Biomolecules 2022, 12(7), 1010; https://doi.org/10.3390/biom12071010 - 21 Jul 2022
Cited by 15 | Viewed by 3842
Abstract
Pyroptosis is a process of programmed cell death mediated by gasdermin (GSDM) found in recent years. In the process of pyroptosis, caspase-1 or caspase-11/4/5 is activated, which cleaves gasdermin D and separates its N-terminal pore-forming domain (PFD). The oligomers of PFD bind to [...] Read more.
Pyroptosis is a process of programmed cell death mediated by gasdermin (GSDM) found in recent years. In the process of pyroptosis, caspase-1 or caspase-11/4/5 is activated, which cleaves gasdermin D and separates its N-terminal pore-forming domain (PFD). The oligomers of PFD bind to the cell membrane and form macropores on the membrane, resulting in cell swelling and membrane rupture. Increasing evidence indicates that pyroptosis is involved in many diseases, including ischemia reperfusion injury. Autophagy is a highly conserved catabolic process in eukaryotic cells. It plays an important role in the survival and maintenance of cells by degrading organelles, proteins, and macromolecules in the cytoplasm and recycling degradation products. Increasing evidence shows that dysfunctional autophagy participates in many diseases. Recently, autophagy and pyroptosis have been reported to play a vital role in the process of ischemia/reperfusion injury, but the related mechanisms are not completely clear. Therefore, this article reviews the role of autophagy and pyroptosis in ischemia–reperfusion injury and analyzes the related mechanisms to provide a basis for future research. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

14 pages, 965 KiB  
Review
Pyroptosis: Mechanisms and Links with Fibrosis
by Zihao Song, Quan Gong and Jiawei Guo
Cells 2021, 10(12), 3509; https://doi.org/10.3390/cells10123509 - 12 Dec 2021
Cited by 24 | Viewed by 5048
Abstract
Fibrosis is responsible for approximately 45% of deaths in the industrialized world and has been a major global healthcare burden. Excessive fibrosis is the primary cause of organ failure. However, there are currently no approved drugs available for the prevention or treatment of [...] Read more.
Fibrosis is responsible for approximately 45% of deaths in the industrialized world and has been a major global healthcare burden. Excessive fibrosis is the primary cause of organ failure. However, there are currently no approved drugs available for the prevention or treatment of fibrosis-related diseases. It has become evident that fibrosis is characterized by inflammation. In a large number of studies of various organs in mice and humans, pyroptosis has been found to play a significant role in fibrosis. Pyroptosis is a form of programmed cell death mediated by the N-terminal fragment of cysteinyl aspartate-specific proteinase (caspase)-1-cleaved gasdermin D (GSDMD, producing GSDMD-N) that gives rise to inflammation via the release of some proinflammatory cytokines, including IL-1β, IL-18 and HMGB1. These cytokines can initiate the activation of fibroblasts. Inflammasomes, an important factor upstream of GSDMD, can activate caspase-1 to trigger the maturation of IL-1β and IL-18. Moreover, the inhibition of inflammasomes, proinflammatory cytokines and GSDMD can prevent the progression of fibrosis. This review summarizes the growing evidence indicating that pyroptosis triggers fibrosis, and highlights potential novel targets for antifibrotic therapies. Full article
Show Figures

Figure 1

19 pages, 3932 KiB  
Article
Gasdermin D Is a Novel Prognostic Biomarker and Relates to TMZ Response in Glioblastoma
by Junhui Liu, Lun Gao, Xiaonan Zhu, Rongxin Geng, Xiang Tao, Haitao Xu and Zhibiao Chen
Cancers 2021, 13(22), 5620; https://doi.org/10.3390/cancers13225620 - 10 Nov 2021
Cited by 14 | Viewed by 2804
Abstract
The gasdermin (GSDM) family act as executioners during pyroptosis. However, its expression and biological role in glioma remain to be determined. This study carried out gene expression from six public datasets. Westerns blots and immunohistochemistry (IHC) staining were employed to examine GSDM expression [...] Read more.
The gasdermin (GSDM) family act as executioners during pyroptosis. However, its expression and biological role in glioma remain to be determined. This study carried out gene expression from six public datasets. Westerns blots and immunohistochemistry (IHC) staining were employed to examine GSDM expression in glioma in an in-house cohort. Kaplan–Meier and Cox regression analyses were performed to evaluate the prognostic role of GSDMs in glioma. Association between gene expression and immune infiltration was assessed by IHC and immunofluorescence (IF) staining of tissue sections. TMZ-induced pyroptosis was assessed by observation of morphological changes, WB and ELISA detection. Only GSDMD expression was upregulated in glioma compared with nontumor brain tissues both in the public datasets and in-house cohort. High GSDMD expression was significantly associated with WHO grade IV, IDH 1/2 wild-type and mesenchymal subtypes. Besides, high GSDMD expression was associated with shorter overall survival and could be used as an independent risk factor for poor outcomes in LGG and GBM. GO enrichment analysis and IHC validation revealed that GSDMD expression might participate in regulating macrophage infiltration and polarization. TMZ treatment induced the pyroptosis in GBM cells and GSDMD expression increased with after treating with TMZ in a time-dependent manner. Moreover, knocking down GSDMD obviously decreased IL-1β expression and reduced TMZ-induced pyroptosis in in vitro. GSDMD was a novel prognostic biomarker, as well as TMZ-treatment response marker in glioma. Full article
(This article belongs to the Special Issue Brain Tumors: Molecular and Cell Biology for Target Therapy)
Show Figures

Figure 1

---

Figure 3

---

Figure 4

---

Figure 5

---

Figure 6

---

Figure 7

---

Figure 8

14 pages, 7498 KiB  
Review
Pyroptosis in Cancer: Friend or Foe?
by Xiuxia Lu, Tianhui Guo and Xing Zhang
Cancers 2021, 13(14), 3620; https://doi.org/10.3390/cancers13143620 - 20 Jul 2021
Cited by 48 | Viewed by 4728
Abstract
Pyroptosis is an inflammatory form of programmed cell death that is mediated by pore-forming proteins such as the gasdermin family (GSDMs), including GSDMA-E. Upon cleavage by activated caspases or granzyme proteases, the N-terminal of GSDMs oligomerizes in membranes to form pores, resulting in [...] Read more.
Pyroptosis is an inflammatory form of programmed cell death that is mediated by pore-forming proteins such as the gasdermin family (GSDMs), including GSDMA-E. Upon cleavage by activated caspases or granzyme proteases, the N-terminal of GSDMs oligomerizes in membranes to form pores, resulting in pyroptosis. Though all the gasdermin proteins have been studied in cancer, the role of pyroptosis in cancer remains mysterious, with conflicting findings. Numerous studies have shown that various stimuli, such as pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), and chemotherapeutic drugs, could trigger pyroptosis when the cells express GSDMs. However, it is not clear whether pyroptosis in cancer induced by chemotherapeutic drugs or CAR T cell therapy is beneficial or harmful for anti-tumor immunity. This review discusses the discovery of pyroptosis as well as its role in inflammatory diseases and cancer, with an emphasis on tumor immunity. Full article
Show Figures

Figure 1

23 pages, 1492 KiB  
Review
Switching from Apoptosis to Pyroptosis: Gasdermin-Elicited Inflammation and Antitumor Immunity
by Kohsuke Tsuchiya
Int. J. Mol. Sci. 2021, 22(1), 426; https://doi.org/10.3390/ijms22010426 - 4 Jan 2021
Cited by 154 | Viewed by 11877
Abstract
Pyroptosis is a necrotic form of regulated cell death. Gasdermines (GSDMs) are a family of intracellular proteins that execute pyroptosis. While GSDMs are expressed as inactive forms, certain proteases proteolytically activate them. The N-terminal fragments of GSDMs form pores in the plasma [...] Read more.
Pyroptosis is a necrotic form of regulated cell death. Gasdermines (GSDMs) are a family of intracellular proteins that execute pyroptosis. While GSDMs are expressed as inactive forms, certain proteases proteolytically activate them. The N-terminal fragments of GSDMs form pores in the plasma membrane, leading to osmotic cell lysis. Pyroptotic cells release pro-inflammatory molecules into the extracellular milieu, thereby eliciting inflammation and immune responses. Recent studies have significantly advanced our knowledge of the mechanisms and physiological roles of pyroptosis. GSDMs are activated by caspases and granzymes, most of which can also induce apoptosis in different situations, for example where the expression of GSDMs is too low to cause pyroptosis; that is, caspase/granzyme-induced apoptosis can be switched to pyroptosis by the expression of GSDMs. Pyroptosis appears to facilitate the killing of tumor cells by cytotoxic lymphocytes, and it may also reprogram the tumor microenvironment to an immunostimulatory state. Understanding pyroptosis may help the development of cancer immunotherapy. In this review article, recent findings on the mechanisms and roles of pyroptosis are introduced. The effectiveness and limitations of pyroptosis in inducing antitumor immunity are also discussed. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

---

Figure 3

---

Figure 4

---

Figure 5

---

Figure 6

1 pages, 132 KiB  
Proceeding Paper
Knock Out of Cell Death Pathway Components Results in Differential Caspase Expression in Response to HCV Infection
by Hannah L. Wallace, Lingyan Wang, Cassandra Davidson, Vipin Chelakkot, Michael Grant, John Pezacki, Kensuke Hirasawa and Rodney S. Russell
Proceedings 2020, 50(1), 144; https://doi.org/10.3390/proceedings2020050144 - 13 Aug 2020
Viewed by 1306
Abstract
Introduction: Pyroptosis (inflammatory programmed cell death) is induced after the activation of an inflammasome, ultimately resulting in pore formation and cell lysis. One factor in the pathology associated with chronic hepatitis C virus (HCV) infection is non-inflammatory caspase-3-mediated apoptosis. Our lab has found [...] Read more.
Introduction: Pyroptosis (inflammatory programmed cell death) is induced after the activation of an inflammasome, ultimately resulting in pore formation and cell lysis. One factor in the pathology associated with chronic hepatitis C virus (HCV) infection is non-inflammatory caspase-3-mediated apoptosis. Our lab has found both apoptosis and pyroptosis occurring in HCV-infected Huh-7.5 cells. In the context of some viral infections, pyroptosis is beneficial to the virus; for others, pyroptosis is believed to represent an innate antiviral response. This study aimed to test the effects of knocking out components of the inflammasome pathway on caspase activation in HCV-infected cells. Methods: FAM-FLICA (Carboxyfluorescein - Fluorochrome Inhibitor of Caspases) probes or antibodies were used to visualize active caspase-1 and active caspase-3 in vitro. Huh-7.5 cells with components of the pyroptotic or apoptotic pathways knocked out (NLRP3, GSDM-D or caspase-3) were used to determine the effects of their absence on the virus and caspase activation using confocal microscopy and flow cytometry. Results: Increased levels of caspase-1 were consistently observed in HCV-infected cells compared to those in uninfected cells, and these levels increased with subsequent days post-infection. The inhibition of inflammasome activation using knock out cell lines induced the differential activation of caspase-1 and caspase-3, with the inhibition of pyroptosis, resulting in a trend towards greater expression of caspase-3, indicative of apoptosis. The inhibition of NLRP3 did not fully stop caspase-1 activation, but it was decreased. The flow cytometry results revealed a small sub-set of cells positive for both caspase-1 and caspase-3. Conclusions: These data confirm the occurrence of pyroptosis in HCV-infected cells and demonstrate the involvement of the NLRP3 inflammasome, although other inflammasome sensors might be involved. Since the inhibition of one cell death pathway resulted in the increased activation of the other, along with the presence of double-positive cells, there may be cross-talk between apoptotic and pyroptotic pathways; the role of this cross-talk during infection remains to be elucidated. Full article
(This article belongs to the Proceedings of Viruses 2020—Novel Concepts in Virology)
12 pages, 1859 KiB  
Review
Partners in Crime: The Interplay of Proteins and Membranes in Regulated Necrosis
by Uris Ros, Lohans Pedrera and Ana J. Garcia-Saez
Int. J. Mol. Sci. 2020, 21(7), 2412; https://doi.org/10.3390/ijms21072412 - 31 Mar 2020
Cited by 25 | Viewed by 4328
Abstract
Pyroptosis, necroptosis, and ferroptosis are well-characterized forms of regulated necrosis that have been associated with human diseases. During regulated necrosis, plasma membrane damage facilitates the movement of ions and molecules across the bilayer, which finally leads to cell lysis and release of intracellular [...] Read more.
Pyroptosis, necroptosis, and ferroptosis are well-characterized forms of regulated necrosis that have been associated with human diseases. During regulated necrosis, plasma membrane damage facilitates the movement of ions and molecules across the bilayer, which finally leads to cell lysis and release of intracellular content. Therefore, these types of cell death have an inflammatory phenotype. Each type of regulated necrosis is mediated by a defined machinery comprising protein and lipid molecules. Here, we discuss how the interaction and reshaping of these cellular components are essential and distinctive processes during pyroptosis, necroptosis, and ferroptosis. We point out that although the plasma membrane is the common target in regulated necrosis, different mechanisms of permeabilization have emerged depending on the cell death form. Pore formation by gasdermins (GSDMs) is a hallmark of pyroptosis, while mixed lineage kinase domain-like (MLKL) protein facilitates membrane permeabilization in necroptosis, and phospholipid peroxidation leads to membrane damage in ferroptosis. This diverse repertoire of mechanisms leading to membrane permeabilization contributes to define the specific inflammatory and immunological outcome of each type of regulated necrosis. Current efforts are focused on new therapies that target critical protein and lipid molecules on these pathways to fight human pathologies associated with inflammation. Full article
(This article belongs to the Special Issue Lipid-Protein and Protein-Protein Interactions in Membranes)
Show Figures

Figure 1

---

Figure 3

Back to TopTop -