Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,139)

Search Parameters:
Keywords = HDAC6

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2719 KiB  
Article
Structure-Based Identification of Novel Histone Deacetylase 4 (HDAC4) Inhibitors
by Rupesh Agarwal, Pawat Pattarawat, Michael R. Duff, Hwa-Chain Robert Wang, Jerome Baudry and Jeremy C. Smith
Pharmaceuticals 2024, 17(7), 867; https://doi.org/10.3390/ph17070867 - 2 Jul 2024
Viewed by 228
Abstract
Histone deacetylases (HDACs) are important cancer drug targets. Existing FDA-approved drugs target the catalytic pocket of HDACs, which is conserved across subfamilies (classes) of HDAC. However, engineering specificity is an important goal. Herein, we use molecular modeling approaches to identify and target potential [...] Read more.
Histone deacetylases (HDACs) are important cancer drug targets. Existing FDA-approved drugs target the catalytic pocket of HDACs, which is conserved across subfamilies (classes) of HDAC. However, engineering specificity is an important goal. Herein, we use molecular modeling approaches to identify and target potential novel pockets specific to Class IIA HDAC-HDAC4 at the interface between HDAC4 and the transcriptional corepressor component protein NCoR. These pockets were screened using an ensemble docking approach combined with consensus scoring to identify compounds with a different binding mechanism than the currently known HDAC modulators. Binding was compared in experimental assays between HDAC4 and HDAC3, which belong to a different family of HDACs. HDAC4 was significantly inhibited by compound 88402 but not HDAC3. Two other compounds (67436 and 134199) had IC50 values in the low micromolar range for both HDACs, which is comparable to the known inhibitor of HDAC4, SAHA (Vorinostat). However, both of these compounds were significantly weaker inhibitors of HDAC3 than SAHA and thus more selective, albeit to a limited extent. Five compounds exhibited activity on human breast carcinoma and/or urothelial carcinoma cell lines. The present result suggests potential mechanistic and chemical approaches for developing selective HDAC4 modulators. Full article
(This article belongs to the Special Issue Small Molecule Drug Discovery: Driven by In-Silico Techniques)
Show Figures

Figure 1

---

Figure 3

---

Figure 4

---

Figure 5

15 pages, 4731 KiB  
Article
Selective HDAC6 Inhibition Has the Potential for Anti-Cancer Effect in Renal Cell Carcinoma
by Tsutomu Anraku, Masaki Murata, Hiroo Kuroki, Akira Kazama, Yuko Shirono, Masayuki Tasaki, Vladimir Bilim and Yoshihiko Tomita
J. Pers. Med. 2024, 14(7), 704; https://doi.org/10.3390/jpm14070704 - 30 Jun 2024
Viewed by 248
Abstract
Despite significant advancements in systemic therapy for renal cell carcinoma (RCC), the prognosis for patients with metastatic RCC remains poor, as they are often incurable. Consequently, there is an urgent need for innovative therapeutic strategies to further enhance the efficacy of RCC treatment [...] Read more.
Despite significant advancements in systemic therapy for renal cell carcinoma (RCC), the prognosis for patients with metastatic RCC remains poor, as they are often incurable. Consequently, there is an urgent need for innovative therapeutic strategies to further enhance the efficacy of RCC treatment and improve patient outcomes. One such promising avenue lies in targeting histone deacetylase (HDAC) 6, a protein known to regulate numerous crucial biological processes implicated in cancer progression by modulating the acetylation status of various cytoplasmic proteins. To explore the therapeutic potential of HDAC6 inhibition in RCC, our study focused on investigating the effects of HDAC6 inhibitors on cultured RCC cells. Utilizing a panel of 12 small molecule selective HDAC6 inhibitors and employing genetic knockdown techniques, we examined the impact of HDAC6 inhibition on RCC cellular dynamics. Our findings revealed that HDAC6 inhibition exerted a profound effect on RCC cells, resulting in decreased cell viability and DNA replication. Importantly, this effect was attributed to the induction of apoptosis. Our study provides valuable insights into the mechanisms underlying the anticancer effects of selective HDAC6 inhibitors on RCC. A detailed understanding of the molecular mechanisms underlying the anticancer effects of HDAC6 inhibition is important to explore new therapeutic strategies for metastatic RCC. Full article
(This article belongs to the Section Molecular Targeted Therapy)
Show Figures

Figure 1

---

Figure 3

---

Figure 4

13 pages, 5890 KiB  
Article
A Novel Class I HDAC Inhibitor, AW01178, Inhibits Epithelial–Mesenchymal Transition and Metastasis of Breast Cancer
by Xiangxiang Liu, Yawen Chen, Yang Li, Ying Shen, Shasha Dong and Jiang Tan
Int. J. Mol. Sci. 2024, 25(13), 7234; https://doi.org/10.3390/ijms25137234 - 30 Jun 2024
Viewed by 321
Abstract
Epithelial–mesenchymal transition (EMT) refers to the transformation of polar epithelial cells into motile mesenchymal cells under specific physiological or pathological conditions, thus promoting the metastasis of cancer cells. Epithelial cadherin (E-cadherin) is a protein that plays an important role in the acquisition of [...] Read more.
Epithelial–mesenchymal transition (EMT) refers to the transformation of polar epithelial cells into motile mesenchymal cells under specific physiological or pathological conditions, thus promoting the metastasis of cancer cells. Epithelial cadherin (E-cadherin) is a protein that plays an important role in the acquisition of tumor cell motility and serves as a key EMT epithelial marker. In the present study, AW01178, a small-molecule compound with potential therapeutic efficacy, was identified via in-cell Western high-throughput screening technology using E-cadherin as the target. The compound induced the upregulation of E-cadherin at both mRNA and protein levels and inhibited the EMT of breast cancer cells in vitro as well as metastasis in vivo. Mechanistically, AW01178 is a novel benzacetamide histone deacetylase inhibitor (HDACi) mainly targeting class I histone deacetylases. AW01178 promoted the transcription and expression of E-cadherin through enhancing the acetylation level of histone H3 in the E-cadherin promoter region, thereby inhibiting the metastasis of breast cancer cells. The collective findings support the potential utility of the novel HDACi compound identified in this study, AW01178, as a therapeutic drug for breast cancer and highlight its value for the future development of HDACi structures as anticancer drugs. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

---

Figure 3

---

Figure 4

16 pages, 3079 KiB  
Article
Pterostilbene Reverses Epigenetic Silencing of Nrf2 and Enhances Antioxidant Response in Endothelial Cells in Hyperglycemic Microenvironment
by Kannan Harithpriya, Kumar Ganesan and Kunka Mohanram Ramkumar
Nutrients 2024, 16(13), 2045; https://doi.org/10.3390/nu16132045 - 27 Jun 2024
Viewed by 472
Abstract
The epigenetic regulation of nuclear factor erythroid 2-related factor 2 (Nrf2), a pivotal redox transcription factor, plays a crucial role in maintaining cellular homeostasis. Recent research has underscored the significance of epigenetic modifications of Nrf2 in the pathogenesis of diabetic foot ulcers (DFUs). [...] Read more.
The epigenetic regulation of nuclear factor erythroid 2-related factor 2 (Nrf2), a pivotal redox transcription factor, plays a crucial role in maintaining cellular homeostasis. Recent research has underscored the significance of epigenetic modifications of Nrf2 in the pathogenesis of diabetic foot ulcers (DFUs). This study investigates the epigenetic reversal of Nrf2 by pterostilbene (PTS) in human endothelial cells in a hyperglycemic microenvironment (HGM). The activation potential of PTS on Nrf2 was evaluated through ARE-Luciferase reporter assays and nuclear translocation studies. Following 72 h of exposure to an HGM, mRNA expression and protein levels of Nrf2 and its downstream targets NAD(P)H quinone oxidoreductase 1 (NQO1), heme-oxygenase 1(HO-1), superoxide dismutase (SOD), and catalase (CAT) exhibited a decrease, which was mitigated in PTS-pretreated endothelial cells. Epigenetic markers, including histone deacetylases (HDACs class I–IV) and DNA methyltransferases (DNMTs 1/3A and 3B), were found to be downregulated under diabetic conditions. Specifically, Nrf2-associated HDACs, including HDAC1, HDAC2, HDAC3, and HDAC4, were upregulated in HGM-induced endothelial cells. This upregulation was reversed in PTS-pretreated cells, except for HDAC2, which exhibited elevated expression in endothelial cells treated with PTS in a hyperglycemic microenvironment. Additionally, PTS was observed to reverse the activity of the methyltransferase enzyme DNMT. Furthermore, CpG islands in the Nrf2 promoter were hypermethylated in cells exposed to an HGM, a phenomenon potentially counteracted by PTS pretreatment, as shown by methyl-sensitive restriction enzyme PCR (MSRE-qPCR) analysis. Collectively, our findings highlight the ability of PTS to epigenetically regulate Nrf2 expression under hyperglycemic conditions, suggesting its therapeutic potential in managing diabetic complications. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

---

Figure 3

---

Figure 4

---

Figure 5

---

Figure 6

---

Figure 7

---

Figure 8

15 pages, 2827 KiB  
Article
SAHA/5-AZA Enhances Acetylation and Degradation of mutp53, Upregulates p21 and Downregulates c-Myc and BRCA-1 in Pancreatic Cancer Cells
by Michele Di Crosta, Francesca Chiara Ragone, Rossella Benedetti, Gabriella D’Orazi, Maria Saveria Gilardini Montani and Mara Cirone
Int. J. Mol. Sci. 2024, 25(13), 7020; https://doi.org/10.3390/ijms25137020 - 27 Jun 2024
Viewed by 287
Abstract
Epigenetic changes are common in cancer and include aberrant DNA methylation and histone modifications, including both acetylation or methylation. DNA methylation in the promoter regions and histone deacetylation are usually accompanied by gene silencing, and may lead to the suppression of tumor suppressors [...] Read more.
Epigenetic changes are common in cancer and include aberrant DNA methylation and histone modifications, including both acetylation or methylation. DNA methylation in the promoter regions and histone deacetylation are usually accompanied by gene silencing, and may lead to the suppression of tumor suppressors in cancer cells. An interaction between epigenetic pathways has been reported that could be exploited to more efficiently target aggressive cancer cells, particularly those against which current treatments usually fail, such as pancreatic cancer. In this study, we explored the possibility to combine the DNA demethylating agent 5-AZA with HDAC inhibitor SAHA to treat pancreatic cancer cell lines, focusing on the acetylation of mutp53 and the consequences on its stability, as well as on the interaction of this protein with c-myc and BRCA-1, key molecules in cancer survival. The results obtained suggest that SAHA/5-AZA combination was more effective than single treatments to promote the degradation of mutp53, to upregulate p21 and downregulate c-Myc and BRCA-1, thus increasing DNA damage and cytotoxicity in pancreatic cancer cells. Full article
Show Figures

Figure 1

---

Figure 3

---

Figure 4

---

Figure 5

21 pages, 4225 KiB  
Review
Histone Deacetylases in Retinoblastoma
by Malwina Lisek, Julia Tomczak, Julia Swiatek, Aleksandra Kaluza and Tomasz Boczek
Int. J. Mol. Sci. 2024, 25(13), 6910; https://doi.org/10.3390/ijms25136910 - 24 Jun 2024
Viewed by 420
Abstract
Retinoblastoma, a pediatric ocular malignancy, presents significant challenges in comprehending its molecular underpinnings and targeted therapeutic approaches. The dysregulated activity of histone deacetylases (HDACs) has been associated with retinoblastoma pathogenesis, influencing critical cellular processes like cell cycle regulation or retinal ganglion cell apoptosis. [...] Read more.
Retinoblastoma, a pediatric ocular malignancy, presents significant challenges in comprehending its molecular underpinnings and targeted therapeutic approaches. The dysregulated activity of histone deacetylases (HDACs) has been associated with retinoblastoma pathogenesis, influencing critical cellular processes like cell cycle regulation or retinal ganglion cell apoptosis. Through their deacetylase activity, HDACs exert control over key tumor suppressors and oncogenes, influencing the delicate equilibrium between proliferation and cell death. Furthermore, the interplay between HDACs and the retinoblastoma protein pathway, a pivotal aspect of retinoblastoma etiology, reveals a complex network of interactions influencing the tumor microenvironment. The examination of HDAC inhibitors, encompassing both established and novel compounds, offers insights into potential approaches to restore acetylation balance and impede retinoblastoma progression. Moreover, the identification of specific HDAC isoforms exhibiting varying expression in retinoblastoma provides avenues for personalized therapeutic strategies, allowing for interventions tailored to individual patient profiles. This review focuses on the intricate interrelationship between HDACs and retinoblastoma, shedding light on epigenetic mechanisms that control tumor development and progression. The exploration of HDAC-targeted therapies underscores the potential for innovative treatment modalities in the pursuit of more efficacious and personalized management strategies for this disease. Full article
(This article belongs to the Special Issue The Role of Neurons in Human Health and Disease 2.0)
Show Figures

Figure 1

21 pages, 633 KiB  
Review
Role of HDAC5 Epigenetics in Chronic Craniofacial Neuropathic Pain
by Sifong Elise Hui and Karin N Westlund
Int. J. Mol. Sci. 2024, 25(13), 6889; https://doi.org/10.3390/ijms25136889 - 23 Jun 2024
Viewed by 240
Abstract
The information provided from the papers reviewed here about the role of epigenetics in chronic craniofacial neuropathic pain is critically important because epigenetic dysregulation during the development and maintenance of chronic neuropathic pain is not yet well characterized, particularly for craniofacial pain. We [...] Read more.
The information provided from the papers reviewed here about the role of epigenetics in chronic craniofacial neuropathic pain is critically important because epigenetic dysregulation during the development and maintenance of chronic neuropathic pain is not yet well characterized, particularly for craniofacial pain. We have noted that gene expression changes reported vary depending on the nerve injury model and the reported sample collection time point. At a truly chronic timepoint of 10 weeks in our model of chronic neuropathic pain, functional groupings of genes examined include those potentially contributing to anti-inflammation, nerve repair/regeneration, and nociception. Genes altered after treatment with the epigenetic modulator LMK235 are discussed. All of these differentials are key in working toward the development of diagnosis-targeted therapeutics and likely for the timing of when the treatment is provided. The emphasis on the relevance of time post-injury is reiterated here. Full article
(This article belongs to the Special Issue New Advances in Epigenetics and Epigenomics)
25 pages, 381 KiB  
Review
The Role of Interferon Regulatory Factors in Liver Diseases
by Chuanfei Zeng, Xiaoqin Zhu, Huan Li, Ziyin Huang and Mingkai Chen
Int. J. Mol. Sci. 2024, 25(13), 6874; https://doi.org/10.3390/ijms25136874 - 22 Jun 2024
Viewed by 215
Abstract
The interferon regulatory factors (IRFs) family comprises 11 members that are involved in various biological processes such as antiviral defense, cell proliferation regulation, differentiation, and apoptosis. Recent studies have highlighted the roles of IRF1-9 in a range of liver diseases, including hepatic ischemia–reperfusion [...] Read more.
The interferon regulatory factors (IRFs) family comprises 11 members that are involved in various biological processes such as antiviral defense, cell proliferation regulation, differentiation, and apoptosis. Recent studies have highlighted the roles of IRF1-9 in a range of liver diseases, including hepatic ischemia–reperfusion injury (IRI), alcohol-induced liver injury, Con A-induced liver injury, nonalcoholic fatty liver disease (NAFLD), cirrhosis, and hepatocellular carcinoma (HCC). IRF1 is involved in the progression of hepatic IRI through signaling pathways such as PIAS1/NFATc1/HDAC1/IRF1/p38 MAPK and IRF1/JNK. The regulation of downstream IL-12, IL-15, p21, p38, HMGB1, JNK, Beclin1, β-catenin, caspase 3, caspase 8, IFN-γ, IFN-β and other genes are involved in the progression of hepatic IRI, and in the development of HCC through the regulation of PD-L1, IL-6, IL-8, CXCL1, CXCL10, and CXCR3. In addition, IRF3-PPP2R1B and IRF4-FSTL1-DIP2A/CD14 pathways are involved in the development of NAFLD. Other members of the IRF family also play moderately important functions in different liver diseases. Therefore, given the significance of IRFs in liver diseases and the lack of a comprehensive compilation of their molecular mechanisms in different liver diseases, this review is dedicated to exploring the molecular mechanisms of IRFs in various liver diseases. Full article
18 pages, 5955 KiB  
Article
Inhibition of Histone Deacetylase Activity Increases Cisplatin Efficacy to Eliminate Metastatic Cells in Pediatric Liver Cancers
by Ruhi Gulati, Yasmeen Fleifil, Katherine Jennings, Alex Bondoc, Greg Tiao, James Geller, Lubov Timchenko and Nikolai Timchenko
Cancers 2024, 16(13), 2300; https://doi.org/10.3390/cancers16132300 - 22 Jun 2024
Viewed by 288
Abstract
The pediatric liver cancers, hepatoblastoma and hepatocellular carcinoma, are dangerous cancers which often spread to the lungs. Although treatments with cisplatin significantly improve outcomes, cisplatin may not eliminate metastasis-initiating cells. Our group has recently shown that the metastatic microenvironments of hepatoblastoma contain Cancer [...] Read more.
The pediatric liver cancers, hepatoblastoma and hepatocellular carcinoma, are dangerous cancers which often spread to the lungs. Although treatments with cisplatin significantly improve outcomes, cisplatin may not eliminate metastasis-initiating cells. Our group has recently shown that the metastatic microenvironments of hepatoblastoma contain Cancer Associated Fibroblasts (CAFs) and neuron-like cells, which initiate cancer spread from liver to lungs. In this study, we found that these cells express high levels of HDAC1; therefore, we examined if histone deacetylase inhibition improves cisplatin anti-proliferative effects and reduces the formation of tumor clusters in pediatric liver cancer metastatic microenvironments. Methods: New cell lines were generated from primary hepatoblastoma liver tumors (hbl) and lung metastases (LM) of HBL patients. In addition, cell lines were generated from hepatocellular neoplasm, not otherwise specified (HCN-NOS) tumor samples, and hcc cell lines. Hbl, LM and hcc cells were treated with cisplatin, SAHA or in combination. The effect of these drugs on the number of cells, formation of tumor clusters and HDAC1-Sp5-p21 axis were examined. Results: Both HBL and HCC tissue specimens have increased HDAC1-Sp5 pathway activation, recapitulated in cell lines generated from the tumors. HDAC inhibition with vorinostat (SAHA) increases cisplatin efficacy to eliminate CAFs in hbl and in hcc cell lines. Although the neuron-like cells survive the combined treatments, proliferation was inhibited. Notably, combining SAHA with cisplatin overcame cisplatin resistance in an LM cell line from an aggressive case with multiple metastases. Underlying mechanisms of this enhanced inhibition include suppression of the HDAC1-Sp5 pathway and elevation of an inhibitor of proliferation p21. Similar findings were found with gemcitabine treatments suggesting that elimination of proliferative CAFs cells is a key event in the inhibition of mitotic microenvironment. Conclusions: Our studies demonstrate the synergistic benefits of HDAC inhibition and cisplatin to eliminate metastasis-initiating cells in pediatric liver cancers. Full article
Show Figures

Figure 1

---

Figure 3

---

Figure 4

---

Figure 5

---

Figure 6

---

Figure 7

---

Figure 8

---

Figure 9

---

Figure 10

18 pages, 3488 KiB  
Article
The Role of TPM3 in Protecting Cardiomyocyte from Hypoxia-Induced Injury via Cytoskeleton Stabilization
by Ke Huang, Weijia Yang, Mingxuan Shi, Shiqi Wang, Yi Li and Zhaoqing Xu
Int. J. Mol. Sci. 2024, 25(12), 6797; https://doi.org/10.3390/ijms25126797 - 20 Jun 2024
Viewed by 320
Abstract
Ischemic heart disease (IHD) remains a major global health concern, with ischemia-reperfusion injury exacerbating myocardial damage despite therapeutic interventions. In this study, we investigated the role of tropomyosin 3 (TPM3) in protecting cardiomyocytes against hypoxia-induced injury and oxidative stress. Using the AC16 and [...] Read more.
Ischemic heart disease (IHD) remains a major global health concern, with ischemia-reperfusion injury exacerbating myocardial damage despite therapeutic interventions. In this study, we investigated the role of tropomyosin 3 (TPM3) in protecting cardiomyocytes against hypoxia-induced injury and oxidative stress. Using the AC16 and H9c2 cell lines, we established a chemical hypoxia model by treating cells with cobalt chloride (CoCl2) to simulate low-oxygen conditions. We found that CoCl2 treatment significantly upregulated the expression of hypoxia-inducible factor 1 alpha (HIF-1α) in cardiomyocytes, indicating the successful induction of hypoxia. Subsequent morphological and biochemical analyses revealed that hypoxia altered cardiomyocyte morphology disrupted the cytoskeleton, and caused cellular damage, accompanied by increased lactate dehydrogenase (LDH) release and malondialdehyde (MDA) levels, and decreased superoxide dismutase (SOD) activity, indicative of oxidative stress. Lentivirus-mediated TPM3 overexpression attenuated hypoxia-induced morphological changes, cellular damage, and oxidative stress imbalance, while TPM3 knockdown exacerbated these effects. Furthermore, treatment with the HDAC1 inhibitor MGCD0103 partially reversed the exacerbation of hypoxia-induced injury caused by TPM3 knockdown. Protein–protein interaction (PPI) network and functional enrichment analysis suggested that TPM3 may modulate cardiac muscle development, contraction, and adrenergic signaling pathways. In conclusion, our findings highlight the therapeutic potential of TPM3 modulation in mitigating hypoxia-associated cardiac injury, suggesting a promising avenue for the treatment of ischemic heart disease and other hypoxia-related cardiac pathologies. Full article
(This article belongs to the Special Issue Genes and Human Diseases 2.0)
Show Figures

Figure 1

---

Figure 3

---

Figure 4

---

Figure 5

---

Figure 6

---

Figure 7

---

Figure 8

17 pages, 2992 KiB  
Article
Class I and II Histone Deacetylase Inhibitors as Therapeutic Modulators of Dilated Cardiac Tissue-Derived Mesenchymal Stem/Stromal Cells
by Rokas Mikšiūnas, Siegfried Labeit and Daiva Bironaite
Int. J. Mol. Sci. 2024, 25(12), 6758; https://doi.org/10.3390/ijms25126758 - 19 Jun 2024
Viewed by 323
Abstract
The prevalence of dilated cardiomyopathy (DCM) is increasing globally, highlighting the need for innovative therapeutic approaches to prevent its onset. In this study, we examined the energetic and epigenetic distinctions between dilated and non-dilated human myocardium-derived mesenchymal stem/stromal cells (hmMSCs) and assessed the [...] Read more.
The prevalence of dilated cardiomyopathy (DCM) is increasing globally, highlighting the need for innovative therapeutic approaches to prevent its onset. In this study, we examined the energetic and epigenetic distinctions between dilated and non-dilated human myocardium-derived mesenchymal stem/stromal cells (hmMSCs) and assessed the effects of class I and II HDAC inhibitors (HDACi) on these cells and their cardiomyogenic differentiation. Cells were isolated from myocardium biopsies using explant outgrowth methods. Mitochondrial and histone deacetylase activities, ATP levels, cardiac transcription factors, and structural proteins were assessed using flow cytometry, PCR, chemiluminescence, Western blotting, and immunohistochemistry. The data suggest that the tested HDAC inhibitors improved acetylation and enhanced the energetic status of both types of cells, with significant effects observed in dilated myocardium-derived hmMSCs. Additionally, the HDAC inhibitors activated the cardiac transcription factors Nkx2-5, HOPX, GATA4, and Mef2C, and upregulated structural proteins such as cardiac troponin T and alpha cardiac actin at both the protein and gene levels. In conclusion, our findings suggest that HDACi may serve as potential modulators of the energetic status and cardiomyogenic differentiation of human heart hmMSCs. This avenue of exploration could broaden the search for novel therapeutic interventions for dilated cardiomyopathy, ultimately leading to improvements in heart function. Full article
(This article belongs to the Special Issue Research on Skeletal and Cardiac Muscle Regeneration Mechanisms)
Show Figures

Figure 1

---

Figure 3

---

Figure 4

---

Figure 5

---

Figure 6

---

Figure 7

10 pages, 1000 KiB  
Article
Up-Regulation of Non-Homologous End-Joining by MUC1
by Tadayoshi Bessho
Genes 2024, 15(6), 808; https://doi.org/10.3390/genes15060808 - 19 Jun 2024
Viewed by 339
Abstract
Ionizing radiation (IR) and chemotherapy with DNA-damaging drugs such as cisplatin are vital cancer treatment options. These treatments induce double-strand breaks (DSBs) as cytotoxic DNA damage; thus, the DSB repair activity in each cancer cell significantly influences the efficacy of the treatments. Pancreatic [...] Read more.
Ionizing radiation (IR) and chemotherapy with DNA-damaging drugs such as cisplatin are vital cancer treatment options. These treatments induce double-strand breaks (DSBs) as cytotoxic DNA damage; thus, the DSB repair activity in each cancer cell significantly influences the efficacy of the treatments. Pancreatic cancers are known to be resistant to these treatments, and the overexpression of MUC1, a member of the glycoprotein mucins, is associated with IR- and chemo-resistance. Therefore, we investigated the impact of MUC1 on DSB repair. This report examined the effect of the overexpression of MUC1 on homologous recombination (HR) and non-homologous end-joining (NHEJ) using cell-based DSB repair assays. In addition, the therapeutic potential of NHEJ inhibitors including HDAC inhibitors was also studied using pancreatic cancer cell lines. The MUC1-overexpression enhances NHEJ, while partially suppressing HR. Also, MUC1-overexpressed cancer cell lines are preferentially killed by a DNA-PK inhibitor and HDAC1/2 inhibitors. Altogether, MUC1 induces metabolic changes that create an imbalance between NHEJ and HR activities, and this imbalance can be a target for selective killing by HDAC inhibitors. This is a novel mechanism of MUC1-mediated IR-resistance and will form the basis for targeting MUC1-overexpressed pancreatic cancer. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

20 pages, 5075 KiB  
Article
miR-1 as a Key Epigenetic Regulator in Early Differentiation of Cardiac Sinoatrial Region
by Carlos García-Padilla, Estefanía Lozano-Velasco, Virginio García-López, Amelia Aránega, Diego Franco, Virginio García-Martínez and Carmen López-Sánchez
Int. J. Mol. Sci. 2024, 25(12), 6608; https://doi.org/10.3390/ijms25126608 - 15 Jun 2024
Viewed by 434
Abstract
A large diversity of epigenetic factors, such as microRNAs and histones modifications, are known to be capable of regulating gene expression without altering DNA sequence itself. In particular, miR-1 is considered the first essential microRNA in cardiac development. In this study, miR-1 potential [...] Read more.
A large diversity of epigenetic factors, such as microRNAs and histones modifications, are known to be capable of regulating gene expression without altering DNA sequence itself. In particular, miR-1 is considered the first essential microRNA in cardiac development. In this study, miR-1 potential role in early cardiac chamber differentiation was analyzed through specific signaling pathways. For this, we performed in chick embryos functional experiments by means of miR-1 microinjections into the posterior cardiac precursors—of both primitive endocardial tubes—committed to sinoatrial region fates. Subsequently, embryos were subjected to whole mount in situ hybridization, immunohistochemistry and RT-qPCR analysis. As a relevant novelty, our results revealed that miR-1 increased Amhc1, Tbx5 and Gata4, while this microRNA diminished Mef2c and Cripto expressions during early differentiation of the cardiac sinoatrial region. Furthermore, we observed in this developmental context that miR-1 upregulated CrabpII and Rarß and downregulated CrabpI, which are three crucial factors in the retinoic acid signaling pathway. Interestingly, we also noticed that miR-1 directly interacted with Hdac4 and Calm1/Calmodulin, as well as with Erk2/Mapk1, which are three key factors actively involved in Mef2c regulation. Our study shows, for the first time, a key role of miR-1 as an epigenetic regulator in the early differentiation of the cardiac sinoatrial region through orchestrating opposite actions between retinoic acid and Mef2c, fundamental to properly assign cardiac cells to their respective heart chambers. A better understanding of those molecular mechanisms modulated by miR-1 will definitely help in fields applied to therapy and cardiac regeneration and repair. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

---

Figure 3

---

Figure 4

---

Figure 5

---

Figure 6

---

Figure 7

---

Figure 8

---

Figure 9

---

Figure 10

---

Figure 11

22 pages, 4436 KiB  
Article
Mechanisms of the Antineoplastic Effects of New Fluoroquinolones in 2D and 3D Human Breast and Bladder Cancer Cell Lines
by Nicole Ferrario, Emanuela Marras, Veronica Vivona, Federica Randisi, Antonino Nicolò Fallica, Agostino Marrazzo, Gianpaolo Perletti and Marzia Bruna Gariboldi
Cancers 2024, 16(12), 2227; https://doi.org/10.3390/cancers16122227 - 14 Jun 2024
Viewed by 355
Abstract
Antibacterial fluoroquinolones have emerged as potential anticancer drugs, thus prompting the synthesis of novel molecules with improved cytotoxic characteristics. Ciprofloxacin and norfloxacin derivatives, previously synthesized by our group, showed higher anticancer potency than their progenitors. However, no information about their mechanisms of action [...] Read more.
Antibacterial fluoroquinolones have emerged as potential anticancer drugs, thus prompting the synthesis of novel molecules with improved cytotoxic characteristics. Ciprofloxacin and norfloxacin derivatives, previously synthesized by our group, showed higher anticancer potency than their progenitors. However, no information about their mechanisms of action was reported. In this study, we selected the most active among these promising molecules and evaluated, on a panel of breast (including those triple-negative) and bladder cancer cell lines, their ability to induce cell cycle alterations and apoptotic and necrotic cell death through cytofluorimetric studies. Furthermore, inhibitory effects on cellular migration, metalloproteinase, and/or acetylated histone protein levels were also evaluated by the scratch/wound healing assay and Western blot analyses, respectively. Finally, the DNA relaxation assay was performed to confirm topoisomerase inhibition. Our results indicate that the highest potency previously observed for the derivatives could be related to their ability to induce G2/M cell cycle arrest and apoptotic and/or necrotic cell death. Moreover, they inhibited cellular migration, probably by reducing metalloproteinase levels and histone deacetylases. Finally, topoisomerase inhibition, previously observed in silico, was confirmed. In conclusion, structural modifications of progenitor fluoroquinolones resulted in potent anticancer derivatives possessing multiple mechanisms of action, potentially exploitable for the treatment of aggressive/resistant cancers. Full article
(This article belongs to the Section Cancer Drug Development)
Show Figures

Figure 1

---

Figure 3

---

Figure 4

---

Figure 5

---

Figure 6

---

Figure 7

---

Figure 8

---

Figure 9

---

Figure 10

---

Figure 11

---

Figure 12

16 pages, 9548 KiB  
Article
Dynamic Alterations in Acetylation and Modulation of Histone Deacetylase Expression Evident in the Dentine–Pulp Complex during Dentinogenesis
by Yukako Yamauchi, Emi Shimizu and Henry F. Duncan
Int. J. Mol. Sci. 2024, 25(12), 6569; https://doi.org/10.3390/ijms25126569 - 14 Jun 2024
Viewed by 326
Abstract
Epigenetic modulation, including histone modification, alters gene expression and controls cell fate. Histone deacetylases (HDACs) are identified as important regulators of dental pulp cell (DPC) mineralisation processes. Currently, there is a paucity of information regarding the nature of histone modification and HDAC expression [...] Read more.
Epigenetic modulation, including histone modification, alters gene expression and controls cell fate. Histone deacetylases (HDACs) are identified as important regulators of dental pulp cell (DPC) mineralisation processes. Currently, there is a paucity of information regarding the nature of histone modification and HDAC expression in the dentine–pulp complex during dentinogenesis. The aim of this study was to investigate post-translational histone modulation and HDAC expression during DPC mineralisation and the expression of Class I/II HDACs during tooth development and in adult teeth. HDAC expression (isoforms −1 to −6) was analysed in mineralising primary rat DPCs using qRT-PCR and Western blot with mass spectrometry being used to analyse post-translational histone modifications. Maxillary molar teeth from postnatal and adult rats were analysed using immunohistochemical (IHC) staining for HDACs (1–6). HDAC-1, -2, and -4 protein expression increased until days 7 and 11, but decreased at days 14 and 21, while other HDAC expression increased continuously for 21 days. The Class II mineralisation-associated HDAC-4 was strongly expressed in postnatal sample odontoblasts and DPCs, but weakly in adult teeth, while other Class II HDACs (-5, -6) were relatively strongly expressed in postnatal DPCs and adult odontoblasts. Among Class I HDACs, HDAC-1 showed high expression in postnatal teeth, notably in ameloblasts and odontoblasts. HDAC-2 and -3 had extremely low expression in the rat dentine–pulp complex. Significant increases in acetylation were noted during DPC mineralisation processes, while trimethylation H3K9 and H3K27 marks decreased, and the HDAC-inhibitor suberoylanilide hydroxamic acid (SAHA) enhanced H3K27me3. These results highlight a dynamic alteration in histone acetylation during mineralisation and indicate the relevance of Class II HDAC expression in tooth development and regenerative processes. Full article
(This article belongs to the Special Issue Epigenetic Modifications in Health and Disease)
Show Figures

Figure 1

---

Figure 3

---

Figure 4

---

Figure 5

---

Figure 6

---

Figure 6 Cont.

Back to TopTop -