Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,274)

Search Parameters:
Keywords = eco-friendly

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 2747 KiB  
Communication
Inductive Paper-Based Flexible Contact Force Sensor Utilizing Natural Micro-Nanostructures of Paper: Simplicity, Economy, and Eco-Friendliness
by Haozhe Zhang, Junwen Zhu, Yujia Yang, Qiang Liu, Wei Xiong and Xing Yang
Micromachines 2024, 15(7), 890; https://doi.org/10.3390/mi15070890 (registering DOI) - 7 Jul 2024
Viewed by 109
Abstract
Inductive contact force sensors, known for their high precision and anti-interference capabilities, hold significant potential applications in fields such as wearable and medical monitoring devices. Most of the current research on inductive contact force sensors employed novel nanomaterials as sensitive elements to enhance [...] Read more.
Inductive contact force sensors, known for their high precision and anti-interference capabilities, hold significant potential applications in fields such as wearable and medical monitoring devices. Most of the current research on inductive contact force sensors employed novel nanomaterials as sensitive elements to enhance their sensitivity and other performance characteristics. However, sensors developed through such methods typically involve complex preparation processes, high costs, and difficulty in biodegradation, which limit their further development. This article introduces a new flexible inductive contact force sensor using paper as a sensitive element. Paper inherently possesses micro- and nanostructures on its surface and interior, enabling it to sensitively convert changes in contact force into changes in displacement, making it suitable for use as the sensor’s sensitive element. Additionally, the advantages of paper also include its great flexibility, low cost, wide availability, and biodegradability. Performance testing on this flexible sensor showed good repeatability, hysteresis, sensitivity, and consistency. When used in experiments for monitoring human motion and respiration, this sensor also exhibited great detection performance. The proposed inductive paper-based flexible contact force sensor, with its simple structure, easy manufacturing process, cost-effectiveness, eco-friendliness, and good sensing performance, provides new insights into research for contact force sensors. Full article
(This article belongs to the Special Issue Flexible and Wearable Sensors, 3rd Edition)
15 pages, 2535 KiB  
Article
Eco-Friendly Synthesis of Al2O3 Nanoparticles: Comprehensive Characterization Properties, Mechanics, and Photocatalytic Dye Adsorption Study
by Ahlam Hacine Gharbi, Salah Eddine Laouini, Hadia Hemmami, Abderrhmane Bouafia, Mohammed Taher Gherbi, Ilham Ben Amor, Gamil Gamal Hasan, Mahmood M. S. Abdullah, Tomasz Trzepieciński and Johar Amin Ahmed Abdullah
Coatings 2024, 14(7), 848; https://doi.org/10.3390/coatings14070848 (registering DOI) - 6 Jul 2024
Viewed by 215
Abstract
Metal and metal oxide nanoparticles are gaining traction in inorganic catalysis and photocatalysis, driving the development of eco-friendly methods. This study introduces an eco-friendly and cost-effective approach for synthesizing Al2O3 nanoparticles (NPs) using extracts derived from the leaves of Calligonum [...] Read more.
Metal and metal oxide nanoparticles are gaining traction in inorganic catalysis and photocatalysis, driving the development of eco-friendly methods. This study introduces an eco-friendly and cost-effective approach for synthesizing Al2O3 nanoparticles (NPs) using extracts derived from the leaves of Calligonum comosum L. The primary objective of this investigation is to assess the photocatalytic efficacy of the synthesized catalyst in addressing organic pollutants. The Al2O3 NPs exhibit a spherical morphology with crystalline arrangements, as evidenced by an average crystallite size of 25.1 nm in the XRD analysis. The band gap energy of the Al2O3 NPs is determined to be 2.86 eV. In terms of mechanical properties, the Al2O3 NPs show significant potential in enhancing both flexural and compressive properties, thereby making them a viable choice for improving the mechanical performance of composites. Notably, the Young’s modulus of the hybrid composite (comprising plant material and Al2O3 NPs) exhibits a remarkable increase of 34.4% in flexion and 78.3% in compression compared to the plant material alone. The catalytic performance of the Al2O3 NPs is evaluated using methylene blue (MB) as a cationic dye and Rose Bengal (RB) as an anionic dye. Impressively, the Al2O3 NPs demonstrate degradation efficiencies of 98.2% for MB and 90.5% for RB. The degradation processes occur under solar light irradiation, with a contact time of 120 m, a maintained pH of 7, and a temperature of 25 °C. This study found that Al2O3 nanoparticles are a promising, cost-effective, and environmentally friendly option for water treatment. Full article
Show Figures

Figure 1

---

Figure 3

---

Figure 4

---

Figure 5

---

Figure 6

---

Figure 7

---

Figure 8

---

Figure 9

16 pages, 1571 KiB  
Article
Mitigation of Vibrio-Induced Metabolic Perturbations in Argopecten purpuratus Scallop Larvae via Probiotic Pretreatment
by Katherine Muñoz-Cerro, Leonie Venter, Tim Young, Andrea C. Alfaro, Katherina Brokordt and Paulina Schmitt
J. Mar. Sci. Eng. 2024, 12(7), 1138; https://doi.org/10.3390/jmse12071138 (registering DOI) - 6 Jul 2024
Viewed by 183
Abstract
Background: The decrease in the production of Argopecten purpuratus scallops in Chile is linked to extensive larval deaths in hatcheries caused by bacterial pathogens, particularly Vibrio genus, threatening sustainability. Traditional antibiotic practices raise concerns, urging research on eco-friendly strategies like bacterial probiotics. This [...] Read more.
Background: The decrease in the production of Argopecten purpuratus scallops in Chile is linked to extensive larval deaths in hatcheries caused by bacterial pathogens, particularly Vibrio genus, threatening sustainability. Traditional antibiotic practices raise concerns, urging research on eco-friendly strategies like bacterial probiotics. This study explores the metabolic responses of scallop larvae to Vibrio bivalvicida and evaluates the impact of the Psychrobacter sp. R10_7 probiotic on larval metabolism pre- and post-infection. Materials and Methods: Analysis detected 183 metabolite features, revealing significant changes in larval metabolites during Vibrio infection. Larvae pretreated with probiotics showed a metabolic profile comparable to non-infected larvae, indicating low impact on larval metabolome, likely due to probiotics antagonistic effect on pathogens. Results: Arachidonic acid, eicosatrienoic acid, docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and docosapentaenoic acid (DPA) were significantly higher in non-pretreated/infected larvae compared to both pretreated/infected and non-pretreated/non-infected larvae, potentially supporting the activation of immune response in non-pretreated larvae to Vibrio infection. Identification of 76 metabolites provided insights into scallop larvae metabolome, highlighting the enriched metabolic pathways associated with energy provision and immune response. Conclusions: Probiotic pretreatment may mitigate metabolic disruptions in scallop larvae caused by Vibrio infection, suggesting a promising strategy for sustainable scallop production. Full article
(This article belongs to the Section Marine Aquaculture)
Show Figures

Figure 1

---

Figure 3

15 pages, 5668 KiB  
Article
Development and Application of a Lignin-Based Polyol for Sustainable Reactive Polyurethane Adhesives Synthesis
by Víctor M. Serrano-Martínez, Carlota Hernández-Fernández, Henoc Pérez-Aguilar, María Pilar Carbonell-Blasco, Avelina García-García and Elena Orgilés-Calpena
Polymers 2024, 16(13), 1928; https://doi.org/10.3390/polym16131928 (registering DOI) - 6 Jul 2024
Viewed by 245
Abstract
In response to the environmental impacts of conventional polyurethane adhesives derived from fossil fuels, this study introduces a sustainable alternative utilizing lignin-based polyols extracted from rice straw through a process developed at INESCOP. This research explores the partial substitution of traditional polyols with [...] Read more.
In response to the environmental impacts of conventional polyurethane adhesives derived from fossil fuels, this study introduces a sustainable alternative utilizing lignin-based polyols extracted from rice straw through a process developed at INESCOP. This research explores the partial substitution of traditional polyols with lignin-based equivalents in the synthesis of reactive hot melt polyurethane adhesives (HMPUR) for the footwear industry. The performance of these eco-friendly adhesives was rigorously assessed through Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), rheological analysis, and T-peel tests to ensure their compliance with relevant industry standards. Preliminary results demonstrate that lignin-based polyols can effectively replace a significant portion of fossil-derived polyols, maintaining essential adhesive properties and marking a significant step towards more sustainable adhesive solutions. This study not only highlights the potential of lignin in the realm of sustainable adhesive production but also emphasises the valorisation of agricultural by-products, thus aligning with the principles of green chemistry and sustainability objectives in the polymer industry. Full article
(This article belongs to the Special Issue Progress in Polyurethane and Composites)
Show Figures

Figure 1

---

Figure 3

---

Figure 4

---

Figure 5

---

Figure 6

---

Figure 7

---

Figure 8

---

Figure 9

---

Figure 10

---

Figure 11

---

Figure 12

15 pages, 807 KiB  
Article
Optimization and Modeling of 7-Day Ultra-High-Performance Concrete Comprising Desert Sand and Supplementary Cementitious Materials Using Response Surface Methodology
by Hussein Hamada and Farid Abed
Buildings 2024, 14(7), 2058; https://doi.org/10.3390/buildings14072058 - 5 Jul 2024
Viewed by 168
Abstract
This research employs response surface methodology (RSM) to optimize and model ultra-high-performance concrete (UHPC) formulations, integrating desert sand and varying proportions of supplementary cementitious materials (SCMs), specifically fly ash (FA) and ground granulated blast furnace slag (GGBS). By investigating the influence of desert [...] Read more.
This research employs response surface methodology (RSM) to optimize and model ultra-high-performance concrete (UHPC) formulations, integrating desert sand and varying proportions of supplementary cementitious materials (SCMs), specifically fly ash (FA) and ground granulated blast furnace slag (GGBS). By investigating the influence of desert sand and SCM contents, the study aims to discern their impact on the workability and 7-day compressive strength of UHPC. Employing a central composite design (CCD), thirteen separate mixes were formulated. Key responses, namely workability and compressive strength, were evaluated. The developed models underscore the enhancement in UHPC performance through the partial replacement of cement with SCMs. Notably, an optimal combination of 75% desert sand and 30% SCMs resulted in a workability of 69.4 mm and a 7-day compressive strength of 46.01 MPa. The findings emphasize the potential for eco-friendly concrete in the construction industry, also prompting further exploration into long-term strength and higher SCM concentrations. Full article
(This article belongs to the Special Issue Advances in Modeling and Characterization of Cementitious Composites)
24 pages, 1817 KiB  
Article
Antioxidant-Enhanced Alginate Beads for Stabilizing Rapeseed Oil: Utilizing Extracts from Post-Distillation Waste Residues of Rosemary
by Petroula Tsitlakidou, Despina Kamplioni, Anastasia Kyriakoudi, Maria Irakli, Costas G. Biliaderis and Ioannis Mourtzinos
Foods 2024, 13(13), 2142; https://doi.org/10.3390/foods13132142 - 5 Jul 2024
Viewed by 256
Abstract
An eco-friendly extraction process of polyphenols from conventional dried rosemary tissues and post-distillation waste residues was applied using β-cyclodextrin as a co-solvent. The aqueous extracts were characterized by measuring the total phenolic content, and their phenolic compounds were identified and quantified by LC-MS. [...] Read more.
An eco-friendly extraction process of polyphenols from conventional dried rosemary tissues and post-distillation waste residues was applied using β-cyclodextrin as a co-solvent. The aqueous extracts were characterized by measuring the total phenolic content, and their phenolic compounds were identified and quantified by LC-MS. Sodium alginate solutions (2% w/w) with/without incorporation of rosemary aqueous extracts were prepared and used for the preparation of O/W emulsions containing 20% rapeseed oil and an 80% water phase. Hydrogel beads were then stored at 20 °C for 28 days. The quality of encapsulated oil during storage was evaluated by measurements of the peroxide value, p-anisidine value, free fatty acids, total oxidation value, and fatty acid composition, whilst the aqueous phase of the beads was analyzed for its total extractable phenolic content (TEPC). The experimental findings indicate that the incorporation of aqueous extracts from post-distillation rosemary residues in emulsion-filled hydrogel beads resulted in the lowest level of oxidation products in the encapsulated rapeseed oil (PV = 10.61 ± 0.02 meq/Kg oil, p-AnV = 4.41 ± 0.09, and FFA = 0.14 ± 0.00, expressed as % oleic acid content), indicating an acceptable oil quality until the end of the storage period. Full article
13 pages, 2585 KiB  
Article
Thermal Decomposition of Bio-Based Plastic Materials
by Inés Oliver, Juan A. Conesa and Andres Fullana
Molecules 2024, 29(13), 3195; https://doi.org/10.3390/molecules29133195 - 5 Jul 2024
Viewed by 211
Abstract
This research delves into a detailed exploration of the thermal decomposition behavior of bio-based polymers, specifically thermoplastic starch (TPS) and polylactic acid (PLA), under varying heating rates in a nitrogen atmosphere. This study employs thermogravimetry (TG) to investigate, providing comprehensive insights into the [...] Read more.
This research delves into a detailed exploration of the thermal decomposition behavior of bio-based polymers, specifically thermoplastic starch (TPS) and polylactic acid (PLA), under varying heating rates in a nitrogen atmosphere. This study employs thermogravimetry (TG) to investigate, providing comprehensive insights into the thermal stability of these eco-friendly polymers. In particular, the TPS kinetic model is examined, encompassing the decomposition of three distinct fractions. In contrast, PLA exhibits a simplified kinetic behavior requiring only a fraction described by a zero-order model. The kinetic study involves a systematic investigation into the individual contributions of key components within TPS, including starch, glycerin, and polyvinyl alcohol (PVA). This detailed analysis contributes to a comprehensive understanding of the thermal degradation process of TPS and PLA, enabling the optimization of processing conditions and the prediction of material behavior across varying thermal environments. Furthermore, the incorporation of different starch sources and calcium carbonate additives in TPS enhances our understanding of the polymer’s thermal stability, offering insights into potential applications in diverse industries. Full article
(This article belongs to the Topic Biomass for Energy, Chemicals and Materials)
Show Figures

Figure 1

---

Figure 3

---

Figure 4

---

Figure 5

---

Figure 6

13 pages, 879 KiB  
Article
Relationships between Psychological Risk, Brand Trust, and Repurchase Intentions of Bottled Water: The Moderating Effect of Eco-Friendly Packaging
by Kyung-A Sun and Joonho Moon
Sustainability 2024, 16(13), 5736; https://doi.org/10.3390/su16135736 - 4 Jul 2024
Viewed by 273
Abstract
According to stakeholder theory, consumers are likely to become the main stakeholders of businesses, and promoting their health is an essential element for building a better reputation in the market. The aim of this work was to investigate the relationships among psychological risk, [...] Read more.
According to stakeholder theory, consumers are likely to become the main stakeholders of businesses, and promoting their health is an essential element for building a better reputation in the market. The aim of this work was to investigate the relationships among psychological risk, brand trust, and repurchase intentions. Moreover, the market has been more interested in the environmental implementation of business, and this is not exceptional to the beverage market. Considering such importance, another purpose of this study was to examine the moderating effect of eco-friendly packaging on the relationship between psychological risk and brand trust. This research mainly involved surveys. The survey participants had experience with the bottled water brand Dasani. Survey participants were recruited using a clickworker platform service. To test the research hypotheses, the Hayes process macro model 7 was employed. The results reveal that psychological risk negatively affects brand trust, while brand trust has a positive effect on repurchase intention. Moreover, eco-friendly packaging significantly moderates the impact of psychological risk on brand trust. This work elucidates the literature by identifying the associations among four attributes: psychological risk, brand trust, repurchase intention, and eco-friendly packaging. Full article
(This article belongs to the Special Issue Sustainable Food Marketing, Consumer Behavior and Lifestyles)
Show Figures

Figure 1

25 pages, 18409 KiB  
Article
Enhancing the Storage Longevity of Apples: The Potential of Bacillus subtilis and Streptomyces endus as Preventative Bioagents against Post-Harvest Gray Mold Disease, Caused by Botrytis cinerea
by Aya Abdelhalim, Yasser S. A. Mazrou, Nabila Shahin, Gabr A. El-Kot, Abdelnaser A. Elzaawely, Hanafey F. Maswada, Abeer H. Makhlouf and Yasser Nehela
Plants 2024, 13(13), 1844; https://doi.org/10.3390/plants13131844 (registering DOI) - 4 Jul 2024
Viewed by 205
Abstract
Gray mold, caused by Botrytis cinerea Pers. Fr., is one of the most vital plant diseases, causing extensive pre- and post-harvest losses in apple fruits. In the current study, we isolated and identified two potential endophytic bioagents, Bacillus subtilis and Streptomyces endus. [...] Read more.
Gray mold, caused by Botrytis cinerea Pers. Fr., is one of the most vital plant diseases, causing extensive pre- and post-harvest losses in apple fruits. In the current study, we isolated and identified two potential endophytic bioagents, Bacillus subtilis and Streptomyces endus. Both bioagents exhibited a potent fungistatic effect against B. cinerea under both in vitro and in planta conditions. Moreover, two experiments were carried out; (i) the first experiment was conducted at room temperature after artificial inoculation with B. cinerea to monitor the progression of the infection and the corresponding biochemical responses of the apples. Our in vivo findings showed that the treated B. cinerea-infected apple fruits with the cell-free bacterial filtrate of B. subtilis and S. endus (dipping or wrapping) significantly reduced the rotten area of the treated apple at room temperature. Additionally, B. subtilis and S. endus enhanced the enzymatic (POX and PPO) and non-enzymatic (phenolics and flavonoids) antioxidant defense machinery in treated apples. (ii) The second experiment focused on the preventive effects of both bioagents over a 90-day storage period at 1 °C of healthy apples (no artificial inoculation). The application of both bacterial filtrates prolonged the storage period, reduced the relative weight loss, and maintained high-quality parameters including titratable acidity, firmness, and total soluble solids of apple fruits under cold storage at 1 °C. The Kaplan–Meier analysis of rotten apples over 90 days during cold storage showed that the treated apples lasted longer than the non-treated apples. Moreover, the lifespan of apple fruits dipped in the culture filtrate of B. subtilis, or a fungicide, was increased, with no significant differences, compared with the non-treated apples. The current results showed the possibility of using both bioagents as a safe and eco-friendly alternative to chemical fungicides to control gray mold disease in apples. Full article
(This article belongs to the Special Issue Pathogenesis and Disease Control in Crops—2nd Edition)
Show Figures

Figure 1

---

Figure 3

---

Figure 4

---

Figure 5

---

Figure 6

---

Figure 7

---

Figure 8

---

Figure 9

---

Figure 10

18 pages, 3517 KiB  
Article
Two-Sex Life Table Analysis for Optimizing Beauveria bassiana Application against Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae)
by Junaid Zafar, Rana Fartab Shoukat, Zhanpeng Zhu, Dongran Fu, Xiaoxia Xu and Fengliang Jin
J. Fungi 2024, 10(7), 469; https://doi.org/10.3390/jof10070469 - 4 Jul 2024
Viewed by 598
Abstract
Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) is a highly dispersive, polyphagous insect pest that severely defoliates crops. Excessive reliance on synthetic insecticides leads to ecological pollution and resistance development, urging scientists to probe eco-friendly biopesticides. Here, we explore the virulence of an entomopathogenic fungus, [...] Read more.
Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) is a highly dispersive, polyphagous insect pest that severely defoliates crops. Excessive reliance on synthetic insecticides leads to ecological pollution and resistance development, urging scientists to probe eco-friendly biopesticides. Here, we explore the virulence of an entomopathogenic fungus, Beauveria bassiana, against S. exigua, resulting in 88% larval mortality. Using an age–stage, two-sex life table, we evaluated the lethal and sublethal effects of B. bassiana on the demographic parameters of S. exigua, including survival, development, and reproduction. Sublethal (LC20) and lethal concentrations (LC50) of B. bassiana impacted the parental generation (F0), with these effects further influencing the demographic parameters of the first filial generation (F1). The infected F1 offsprings showed a reduced intrinsic rate of increase (r), mean generation time (T), and net reproduction rate (R0). Larval developmental duration varied significantly between the control (10.98 d) and treated groups (LC20: 10.42; LC50: 9.37 d). Adults in the treated groups had significantly reduced lifespans (M: 8.22; F: 7.32 d) than the control (M: 10.00; F: 8.22 d). Reduced fecundity was observed in the B. bassiana-infected groups (LC20: 313.45; LC50: 223.92 eggs/female) compared to the control (359.55 eggs/female). A biochemical assay revealed elevated levels of detoxification enzymes (esterases, glutathione S-transferases, and acetylcholinesterase) in the F0 generation after B. bassiana infection. However, the enzymatic activity remained non-significant in the F1 generation likely due to the lack of direct fungal exposure. Our findings highlight the enduring effects of B. bassiana on the biological parameters and population dynamics of S. exigua, stressing its use in eco-friendly management programs. Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Figure 1

---

Figure 3

---

Figure 4

---

Figure 5

---

Figure 6

---

Figure 7

12 pages, 3356 KiB  
Review
The Opportunities of Cellulose for Triboelectric Nanogenerators: A Critical Review
by Renyun Zhang
Nanoenergy Adv. 2024, 4(3), 209-220; https://doi.org/10.3390/nanoenergyadv4030013 - 4 Jul 2024
Viewed by 262
Abstract
Engineering polymers stand out as the predominant dielectric materials in triboelectric nanogenerators (TENGs), primarily owing to their robust triboelectric effect and widespread availability. However, growing environmental concerns surrounding these polymers have prompted a notable shift towards exploring alternative eco-friendly materials, with cellulose materials [...] Read more.
Engineering polymers stand out as the predominant dielectric materials in triboelectric nanogenerators (TENGs), primarily owing to their robust triboelectric effect and widespread availability. However, growing environmental concerns surrounding these polymers have prompted a notable shift towards exploring alternative eco-friendly materials, with cellulose materials emerging as compelling contenders over the past few years. Cellulose, derived from various sources and presented in diverse forms and structures, has found utility as triboelectric materials. In contrast to many engineering polymers known for their chemical stability, cellulose materials exhibit heightened chemical activities. This characteristic provides a unique opportunity to delve into fundamental questions in TENGs by manipulating the physical and chemical properties of cellulose materials. This concise critical review aims to thoroughly examine the applications of cellulose materials while shedding light on the opportunities presented by these versatile materials. Full article
Show Figures

Figure 1

---

Figure 3

---

Figure 4

20 pages, 3659 KiB  
Article
Cu-Containing Faujasite-Type Zeolite as an Additive in Eco-Friendly Energetic Materials
by Łukasz Kuterasiński, Marta Sadowska, Paulina Żeliszewska, Bogna Daria Napruszewska, Małgorzata Ruggiero-Mikołajczyk, Mateusz Pytlik and Andrzej Biessikirski
Molecules 2024, 29(13), 3184; https://doi.org/10.3390/molecules29133184 - 4 Jul 2024
Viewed by 257
Abstract
Regarding the current state of the art on the utilization of zeolites in industry, the application of zeolites as an additive to eco-friendly energetic materials indicates the innovative character of the present research. One of the most commonly used energetic materials in the [...] Read more.
Regarding the current state of the art on the utilization of zeolites in industry, the application of zeolites as an additive to eco-friendly energetic materials indicates the innovative character of the present research. One of the most commonly used energetic materials in the mining industry (engineering works) is ANFO (ammonium nitrate fuel oil), due to its easy and cheap production procedure as well as its good energetic properties and vast possibilities for modification. In the present research, we investigated Cu-zeolite with a faujasite structure (Cu-FAU) as a modifier of ANFO-based energetic materials. Analysis of the results obtained from thermodynamic calculations of energetic performance led to the conclusion that the application of Cu-faujasite as an additive to ANFO resulted in a relevant reduction in the total emission of post-decomposition fumes, with simultaneous enhancement of the energetic properties of the energetic material, which corresponded with the changes in the status of the surface and the reduced thermal effect accompanying the ammonium nitrate’s decomposition. From analysis of both the energetic performance and fumes, it may be concluded that our eco-friendly and enhanced energetic material can be used as a low-emission source of energy for the quarrying of raw materials. Full article
Show Figures

Figure 1

---

Figure 3

---

Figure 4

---

Figure 5

---

Figure 6

---

Figure 7

---

Figure A1

17 pages, 3685 KiB  
Article
Evaluation of Aromatic Organic Compounds as Additives on the Lubrication Properties of Castor Oil
by María Teresa Hernández-Sierra, José E. Báez, Luis Daniel Aguilera-Camacho, J. Santos García-Miranda and Karla J. Moreno
Lubricants 2024, 12(7), 244; https://doi.org/10.3390/lubricants12070244 - 4 Jul 2024
Viewed by 259
Abstract
In the quest for sustainable lubrication solutions, the present research explored the potential of five organic compounds as additives in castor oil (CO) to improve its lubricating properties. The compounds tested were curcumin, eugenol, 1,3-Diphenyl-2-propanone, 1,3-Diphenyl-2-propenone, and 1,3-Diphenyl-1,3-propanedione. The main results showed that [...] Read more.
In the quest for sustainable lubrication solutions, the present research explored the potential of five organic compounds as additives in castor oil (CO) to improve its lubricating properties. The compounds tested were curcumin, eugenol, 1,3-Diphenyl-2-propanone, 1,3-Diphenyl-2-propenone, and 1,3-Diphenyl-1,3-propanedione. The main results showed that each additive enhanced at least one characteristic of CO. Most of the additives lowered the density of the castor oil but increased the viscosity by up to 20%. Curcumin and eugenol were particularly effective in creating thicker lubricant films and higher film thickness ratios. Eugenol and 1,3-Diphenyl-2-propanone significantly reduced the friction coefficient by up to 25%. Wear rate and wear mechanisms were significantly reduced with all the additives, achieving a reduction in wear rate of up to 50% (CO+curcumin). All the additives, except the 1,3-Diphenyl-1,3-propanedione, enhanced the oxidation onset temperature up to 8 °C. The influence of chemical structure was also addressed. The optimal additive combination for a specific application that demands minimal friction and wear, as well as strong oxidation stability, was eugenol, followed by curcumin and 1,3-Diphenyl-2-propanone. Overall, the research contributes to the development of eco-friendly lubricants, aligning with the growing demand for green industrial applications, and highlights the significant tribological benefits of these substances as sustainable additives in biolubricant formulations. Full article
(This article belongs to the Special Issue Recent Advances in Green Lubricants)
Show Figures

Graphical abstract

---

Figure 2

---

Figure 3

---

Figure 4

---

Figure 5

---

Figure 6

---

Figure 7

---

Figure 8

---

Figure 9

18 pages, 9821 KiB  
Article
Eco-Friendly 3D-Printed Concrete Made with Waste and Organic Artificial Aggregates
by Karolina Butkutė, Vitoldas Vaitkevičius and Fausta Adomaitytė
Materials 2024, 17(13), 3290; https://doi.org/10.3390/ma17133290 - 3 Jul 2024
Viewed by 519
Abstract
In this research, the results of an experimental study on the use of three alternative components for creating artificial aggregates (AAs) (granules) and their usage in 3D-printed concrete (3DPC) are examined. This study combines AAs made from organic components like hemp shives (HSs), [...] Read more.
In this research, the results of an experimental study on the use of three alternative components for creating artificial aggregates (AAs) (granules) and their usage in 3D-printed concrete (3DPC) are examined. This study combines AAs made from organic components like hemp shives (HSs), pyrolyzed coal (charcoal), waste/municipal solid waste incinerator bottom slag (BS), and a mix of a reference 3DPC with the aforementioned AAs. Particularly, to enhance these properties to make low-carbon 3DPC, in this research, the potential of using AAs as lightweight aggregates was increased to 14% in terms of the mass of the concrete. Each mix was tested in terms of its printability via a preliminary test in a 3D printing laboratory. For an additional comparison with the aforementioned cases, 3DPC was mixed with unprocessed hemp shives, charcoal, and BS. Furthermore, their strength was measured at 28 days, and lastly, their durability parameters and shrinkage were experimentally investigated. Cross-sections of the fragments were studied under a scanning electron microscope. In this study, we achieved improvements in the mechanical properties of AAs for their development and implementation as an innovative way to reduce carbon in 3DPC. Full article
(This article belongs to the Special Issue Environmentally Friendly Composites Incorporating Waste Materials)
Show Figures

Figure 1

---

Figure 3

---

Figure 4

---

Figure 5

---

Figure 6

---

Figure 7

---

Figure 8

---

Figure 9

---

Figure 10

---

Figure 11

---

Figure 12

---

Figure 13

---

Figure 14

---

Figure 15

---

Figure 16

---

Figure 17

---

Figure 18

21 pages, 1399 KiB  
Article
Assessment of the Biodegradability and Compostability of Finished Leathers: Analysis Using Spectroscopy and Thermal Methods
by Alberto Vico, Maria I. Maestre-Lopez, Francisca Arán-Ais, Elena Orgilés-Calpena, Marcelo Bertazzo and Frutos C. Marhuenda-Egea
Polymers 2024, 16(13), 1908; https://doi.org/10.3390/polym16131908 - 3 Jul 2024
Viewed by 392
Abstract
In this study, the biodegradation properties of leather treated with various finishing chemicals were evaluated in order to enhance the sustainability of leather processing. We applied advanced analytical techniques, including FT-IR, thermogravimetric analysis (TGA), and solid-state NMR spectroscopy. Leather samples treated with different [...] Read more.
In this study, the biodegradation properties of leather treated with various finishing chemicals were evaluated in order to enhance the sustainability of leather processing. We applied advanced analytical techniques, including FT-IR, thermogravimetric analysis (TGA), and solid-state NMR spectroscopy. Leather samples treated with different polymers, resins, bio-based materials, and traditional finishing agents were subjected to a composting process under controlled conditions to measure their biodegradability. The findings revealed that bio-based polyurethane finishes and acrylic wax exhibited biodegradability, while traditional chemical finishes like isocyanate and nitrocellulose lacquer showed moderate biodegradation levels. The results indicated significant differences in the biodegradation rates and the impact on plant germination and growth. Some materials, such as black pigment, nitrocellulose lacquer and wax, were beneficial for plant growth, while others, such as polyurethane materials, had adverse effects. These results support the use of eco-friendly finishes to reduce the environmental footprint of leather production. Overall, this study underscores the importance of selecting sustainable finishing chemicals to promote eco-friendly leather-manufacturing practices. Full article
(This article belongs to the Section Biomacromolecules, Biobased and Biodegradable Polymers)
Back to TopTop -