Skip to main content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Biochem J. 1991 Jan 1; 273(Pt 1): 21–37.
PMCID: PMC1150210
PMID: 1989583

Regulation of protein turnover in skeletal and cardiac muscle.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (3.9M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  • Garlick PJ, Maltin CA, Baillie AG, Delday MI, Grubb DA. Fiber-type composition of nine rat muscles. II. Relationship to protein turnover. Am J Physiol. 1989 Dec;257(6 Pt 1):E828–E832. [PubMed] [Google Scholar]
  • Pain VM. Initiation of protein synthesis in mammalian cells. Biochem J. 1986 May 1;235(3):625–637. [PMC free article] [PubMed] [Google Scholar]
  • Barrett EJ, Gelfand RA. The in vivo study of cardiac and skeletal muscle protein turnover. Diabetes Metab Rev. 1989 Mar;5(2):133–148. [PubMed] [Google Scholar]
  • Halliday D, Rennie MJ. The use of stable isotopes for diagnosis and clinical research. Clin Sci (Lond) 1982 Dec;63(6):485–496. [PubMed] [Google Scholar]
  • Hasselgren PO, Pedersen P, Sax HC, Warner BW, Fischer JE. Methods for studying protein synthesis and degradation in liver and skeletal muscle. J Surg Res. 1988 Oct;45(4):389–415. [PubMed] [Google Scholar]
  • Rannels DE, Wartell SA, Watkins CA. The measurement of protein synthesis in biological systems. Life Sci. 1982 May 17;30(20):1679–1690. [PubMed] [Google Scholar]
  • Rennie MJ, Halliday D. The use of stable isotope tracers as metabolic probes of whole-body and limb metabolism. Proc Nutr Soc. 1984 Jun;43(2):189–196. [PubMed] [Google Scholar]
  • Zak R, Martin AF, Blough R. Assessment of protein turnover by use of radioisotopic tracers. Physiol Rev. 1979 Apr;59(2):407–447. [PubMed] [Google Scholar]
  • Williams IH, Sugden PH, Morgan HE. Use of aromatic amino acids as monitors of protein turnover. Am J Physiol. 1981 Jun;240(6):E677–E681. [PubMed] [Google Scholar]
  • McKee EE, Cheung JY, Rannels DE, Morgan HE. Measurement of the rate of protein synthesis and compartmentation of heart phenylalanine. J Biol Chem. 1978 Feb 25;253(4):1030–1040. [PubMed] [Google Scholar]
  • Stirewalt WS, Low RB. Effects of insulin in vitro on protein turnover in rat epitrochlearis muscle. Biochem J. 1983 Feb 15;210(2):323–330. [PMC free article] [PubMed] [Google Scholar]
  • Stirewalt WS, Low RB, Slaiby JM. Insulin sensitivity and responsiveness of epitrochlearis and soleus muscles from fed and starved rats. Recognition of differential changes in insulin sensitivities of protein synthesis and glucose incorporation into glycogen. Biochem J. 1985 Apr 15;227(2):355–362. [PMC free article] [PubMed] [Google Scholar]
  • Clark WA, Jr, Zak R. Assessment of fractional rates of protein synthesis in cardiac muscle cultures after equilibrium labeling. J Biol Chem. 1981 May 25;256(10):4863–4870. [PubMed] [Google Scholar]
  • Martin AF, Rabinowitz M, Blough R, Prior G, Zak R. Measurements of half-life of rat cardiac myosin heavy chain with leucyl-tRNA used as precursor pool. J Biol Chem. 1977 May 25;252(10):3422–3429. [PubMed] [Google Scholar]
  • Melville S, McNurlan MA, McHardy KC, Broom J, Milne E, Calder AG, Garlick PJ. The role of degradation in the acute control of protein balance in adult man: failure of feeding to stimulate protein synthesis as assessed by L-[1-13C]leucin infusion. Metabolism. 1989 Mar;38(3):248–255. [PubMed] [Google Scholar]
  • Jepson MM, Pell JM, Bates PC, Millward DJ. The effects of endotoxaemia on protein metabolism in skeletal muscle and liver of fed and fasted rats. Biochem J. 1986 Apr 15;235(2):329–336. [PMC free article] [PubMed] [Google Scholar]
  • Garlick PJ, McNurlan MA, Preedy VR. A rapid and convenient technique for measuring the rate of protein synthesis in tissues by injection of [3H]phenylalanine. Biochem J. 1980 Nov 15;192(2):719–723. [PMC free article] [PubMed] [Google Scholar]
  • Garlick PJ, Wernerman J, McNurlan MA, Essen P, Lobley GE, Milne E, Calder GA, Vinnars E. Measurement of the rate of protein synthesis in muscle of postabsorptive young men by injection of a 'flooding dose' of [1-13C]leucine. Clin Sci (Lond) 1989 Sep;77(3):329–336. [PubMed] [Google Scholar]
  • McNurlan MA, Garlick PJ. Contribution of rat liver and gastrointestinal tract to whole-body protein synthesis in the rat. Biochem J. 1980 Jan 15;186(1):381–383. [PMC free article] [PubMed] [Google Scholar]
  • Preedy VR, Paska L, Sugden PH, Schofield PS, Sugden MC. The effects of surgical stress and short-term fasting on protein synthesis in vivo in diverse tissues of the mature rat. Biochem J. 1988 Feb 15;250(1):179–188. [PMC free article] [PubMed] [Google Scholar]
  • Pomposelli JJ, Palombo JD, Hamawy KJ, Bistrian BR, Blackburn GL, Moldawer LL. Comparison of different techniques for estimating rates of protein synthesis in vivo in healthy and bacteraemic rats. Biochem J. 1985 Feb 15;226(1):37–42. [PMC free article] [PubMed] [Google Scholar]
  • Obled C, Barre F, Millward DJ, Arnal M. Whole body protein synthesis: studies with different amino acids in the rat. Am J Physiol. 1989 Nov;257(5 Pt 1):E639–E646. [PubMed] [Google Scholar]
  • Preedy VR, Garlick PJ. The influence of restraint and infusion on rates of muscle protein synthesis in the rat. Effect of altered respiratory function. Biochem J. 1988 Apr 15;251(2):577–580. [PMC free article] [PubMed] [Google Scholar]
  • Palmer RM, Bain PA, Reeds PJ. The effect of insulin and intermittent mechanical stretching on rates of protein synthesis and degradation in isolated rabbit muscle. Biochem J. 1985 Aug 15;230(1):117–123. [PMC free article] [PubMed] [Google Scholar]
  • Tischler ME, Desautels M, Goldberg AL. Does leucine, leucyl-tRNA, or some metabolite of leucine regulate protein synthesis and degradation in skeletal and cardiac muscle? J Biol Chem. 1982 Feb 25;257(4):1613–1621. [PubMed] [Google Scholar]
  • Rannels DE, Kao R, Morgan HE. Effect of insulin on protein turnover in heart muscle. J Biol Chem. 1975 Mar 10;250(5):1694–1701. [PubMed] [Google Scholar]
  • Chua B, Kao RL, Rannels DE, Morgan HE. Inhibition of protein degradation by anoxia and ischemia in perfused rat hearts. J Biol Chem. 1979 Jul 25;254(14):6617–6623. [PubMed] [Google Scholar]
  • Young VR, Munro HN. Ntau-methylhistidine (3-methylhistidine) and muscle protein turnover: an overview. Fed Proc. 1978 Jul;37(9):2291–2300. [PubMed] [Google Scholar]
  • Smith DM, Sugden PH. Contrasting response of protein degradation to starvation and insulin as measured by release of N tau-methylhistidine or phenylalanine from the perfused rat heart. Biochem J. 1986 Jul 15;237(2):391–395. [PMC free article] [PubMed] [Google Scholar]
  • Goodman MN, del Pilar Gomez M. Decreased myofibrillar proteolysis after refeeding requires dietary protein or amino acids. Am J Physiol. 1987 Jul;253(1 Pt 1):E52–E58. [PubMed] [Google Scholar]
  • Barrett EJ, Revkin JH, Young LH, Zaret BL, Jacob R, Gelfand RA. An isotopic method for measurement of muscle protein synthesis and degradation in vivo. Biochem J. 1987 Jul 1;245(1):223–228. [PMC free article] [PubMed] [Google Scholar]
  • Bennet WM, Connacher AA, Scrimgeour CM, Rennie MJ. The effect of amino acid infusion on leg protein turnover assessed by L-[15N]phenylalanine and L-[1-13C]leucine exchange. Eur J Clin Invest. 1990 Feb;20(1):41–50. [PubMed] [Google Scholar]
  • Cheng KN, Dworzak F, Ford GC, Rennie MJ, Halliday D. Direct determination of leucine metabolism and protein breakdown in humans using L-[1-13C, 15N]-leucine and the forearm model. Eur J Clin Invest. 1985 Dec;15(6):349–354. [PubMed] [Google Scholar]
  • Cheng KN, Pacy PJ, Dworzak F, Ford GC, Halliday D. Influence of fasting on leucine and muscle protein metabolism across the human forearm determined using L-[1-13C,15N]leucine as the tracer. Clin Sci (Lond) 1987 Sep;73(3):241–246. [PubMed] [Google Scholar]
  • Oddy VH, Lindsay DB. Determination of rates of protein synthesis, gain and degradation in intact hind-limb muscle of lambs. Biochem J. 1986 Jan 15;233(2):417–425. [PMC free article] [PubMed] [Google Scholar]
  • Murray AJ, Nield MK, Jones LM, Galbraith N, Tomas FM. Metabolism of N tau-methylhistidine by mice. Biochem J. 1985 Dec 1;232(2):409–413. [PMC free article] [PubMed] [Google Scholar]
  • Emery PW, Cotellessa L, Holness M, Egan C, Rennie MJ. Different patterns of protein turnover in skeletal and gastrointestinal smooth muscle and the production of N tau-methylhistidine during fasting in the rat. Biosci Rep. 1986 Feb;6(2):143–153. [PubMed] [Google Scholar]
  • Millward DJ, Bates PC. 3-Methylhistidine turnover in the whole body, and the contribution of skeletal muscle and intestine to urinary 3-methylhistidine excretion in the adult rat. Biochem J. 1983 Aug 15;214(2):607–615. [PMC free article] [PubMed] [Google Scholar]
  • Millward DJ, Bates PC, Grimble GK, Brown JG, Nathan M, Rennie MJ. Quantitative importance of non-skeletal-muscle sources of N tau-methylhistidine in urine. Biochem J. 1980 Jul 15;190(1):225–228. [PMC free article] [PubMed] [Google Scholar]
  • Rennie MJ, Millward DJ. 3-Methylhistidine excretion and the urinary 3-methylhistidine/creatinine ratio are poor indicators of skeletal muscle protein breakdown. Clin Sci (Lond) 1983 Sep;65(3):217–225. [PubMed] [Google Scholar]
  • Wassner SJ, Li JB. N tau-methylhistidine release: contributions of rat skeletal muscle, GI tract, and skin. Am J Physiol. 1982 Oct;243(4):E293–E297. [PubMed] [Google Scholar]
  • Ballard FJ, Tomas FM. 3-Methylhistidine as a measure of skeletal muscle protein breakdown in human subjects: the case for its continued use. Clin Sci (Lond) 1983 Sep;65(3):209–215. [PubMed] [Google Scholar]
  • Brenner U, Herbertz L, Thul P, Walter M, Meibert M, Müller JM, Reinauer H. The contribution of small gut to the 3-methylhistidine metabolism in the adult rat. Metabolism. 1987 May;36(5):416–418. [PubMed] [Google Scholar]
  • Preedy VR, Smith DM, Sugden PH. A comparison of rates of protein turnover in rat diaphragm in vivo and in vitro. Biochem J. 1986 Jan 1;233(1):279–282. [PMC free article] [PubMed] [Google Scholar]
  • Baracos VE, Goldberg AL. Maintenance of normal length improves protein balance and energy status in isolated rat skeletal muscles. Am J Physiol. 1986 Oct;251(4 Pt 1):C588–C596. [PubMed] [Google Scholar]
  • Maltin CA, Harris CI. Morphological observations and rates of protein synthesis in rat muscles incubated in vitro. Biochem J. 1985 Dec 15;232(3):927–930. [PMC free article] [PubMed] [Google Scholar]
  • Hummel RP, 3rd, Hasselgren PO, James JH, Warner BW, Fischer JE. The effect of sepsis in rats on skeletal muscle protein synthesis in vivo and in periphery and central core of incubated muscle preparations in vitro. Metabolism. 1988 Dec;37(12):1120–1127. [PubMed] [Google Scholar]
  • Essig DA, Segal SS, White TP. Skeletal muscle protein synthesis and degradation in vitro: effects of temperature. Am J Physiol. 1985 Nov;249(5 Pt 1):C464–C470. [PubMed] [Google Scholar]
  • Seider MJ, Kapp R, Chen CP, Booth FW. The effects of cutting or of stretching skeletal muscle in vitro on the rates of protein synthesis and degradation. Biochem J. 1980 Apr 15;188(1):247–254. [PMC free article] [PubMed] [Google Scholar]
  • Preedy VR, Smith DM, Kearney NF, Sugden PH. Rates of protein turnover in vivo and in vitro in ventricular muscle of hearts from fed and starved rats. Biochem J. 1984 Sep 1;222(2):395–400. [PMC free article] [PubMed] [Google Scholar]
  • Preedy VR, Garlick PJ. Protein synthesis in skeletal muscle of the perfused rat hemicorpus compared with rates in the intact animal. Biochem J. 1983 Aug 15;214(2):433–442. [PMC free article] [PubMed] [Google Scholar]
  • Preedy VR, Garlick PJ. The biochemical actions of phentolamine and papaverine on rat perfused skeletal muscle. J Pharm Pharmacol. 1988 Apr;40(4):267–271. [PubMed] [Google Scholar]
  • Preedy VR, Garlick PJ. The effect of rejuvenation of aged erythrocytes on biochemical parameters in the perfused hind limb muscle preparation. Biochim Biophys Acta. 1988 Oct 7;971(3):275–281. [PubMed] [Google Scholar]
  • Fuller SJ, Sugden PH. Stimulation of protein synthesis, glucose uptake and lactate output by insulin and adenosine deaminase in the rat heart. FEBS Lett. 1986 Jun 9;201(2):246–250. [PubMed] [Google Scholar]
  • Sugden PH, Smith DM. The effects of glucose, acetate, lactate and insulin on protein degradation in the perfused rat heart. Biochem J. 1982 Sep 15;206(3):467–472. [PMC free article] [PubMed] [Google Scholar]
  • Ballard FJ, Read LC, Francis GL, Bagley CJ, Wallace JC. Binding properties and biological potencies of insulin-like growth factors in L6 myoblasts. Biochem J. 1986 Jan 1;233(1):223–230. [PMC free article] [PubMed] [Google Scholar]
  • Gulve EA, Dice JF. Regulation of protein synthesis and degradation in L8 myotubes. Effects of serum, insulin and insulin-like growth factors. Biochem J. 1989 Jun 1;260(2):377–387. [PMC free article] [PubMed] [Google Scholar]
  • Janeczko RA, Etlinger JD. Inhibition of intracellular proteolysis in muscle cultures by multiplication-stimulating activity. Comparison of effects of multiplication-stimulating activity and insulin on proteolysis, protein synthesis, amino acid uptake, and sugar transport. J Biol Chem. 1984 May 25;259(10):6292–6297. [PubMed] [Google Scholar]
  • Sandra A, Przybylski RJ. Ontogeny of insulin binding during chick skeletal myogenesis in vitro. Dev Biol. 1979 Feb;68(2):546–556. [PubMed] [Google Scholar]
  • Kimball SR, Jefferson LS. Cellular mechanisms involved in the action of insulin on protein synthesis. Diabetes Metab Rev. 1988 Dec;4(8):773–787. [PubMed] [Google Scholar]
  • Russo LA, Morgan HE. Control of protein synthesis and ribosome formation in rat heart. Diabetes Metab Rev. 1989 Feb;5(1):31–47. [PubMed] [Google Scholar]
  • Fuller SJ, Sugden PH. Protein synthesis in rat cardiac myocytes is stimulated at the level of translation by phorbol esters. FEBS Lett. 1989 Apr 24;247(2):209–212. [PubMed] [Google Scholar]
  • Levenson RM, Nairn AC, Blackshear PJ. Insulin rapidly induces the biosynthesis of elongation factor 2. J Biol Chem. 1989 Jul 15;264(20):11904–11911. [PubMed] [Google Scholar]
  • Lowell BB, Ruderman NB, Goodman MN. Evidence that lysosomes are not involved in the degradation of myofibrillar proteins in rat skeletal muscle. Biochem J. 1986 Feb 15;234(1):237–240. [PMC free article] [PubMed] [Google Scholar]
  • Smith OL, Wong CY, Gelfand RA. Skeletal muscle proteolysis in rats with acute streptozocin-induced diabetes. Diabetes. 1989 Sep;38(9):1117–1122. [PubMed] [Google Scholar]
  • Flaim KE, Copenhaver ME, Jefferson LS. Effects of diabetes on protein synthesis in fast- and slow-twitch rat skeletal muscle. Am J Physiol. 1980 Jul;239(1):E88–E95. [PubMed] [Google Scholar]
  • Smith DM, Fuller SJ, Sugden PH. The effects of lactate, acetate, glucose, insulin, starvation and alloxan-diabetes on protein synthesis in perfused rat hearts. Biochem J. 1986 Jun 1;236(2):543–547. [PMC free article] [PubMed] [Google Scholar]
  • Bates PC, Millward DJ. Myofibrillar protein turnover. Synthesis rates of myofibrillar and sarcoplasmic protein fractions in different muscles and the changes observed during postnatal development and in response to feeding and starvation. Biochem J. 1983 Aug 15;214(2):587–592. [PMC free article] [PubMed] [Google Scholar]
  • Bates PC, Grimble GK, Sparrow MP, Millward DJ. Myofibrillar protein turnover. Synthesis of protein-bound 3-methylhistidine, actin, myosin heavy chain and aldolase in rat skeletal muscle in the fed and starved states. Biochem J. 1983 Aug 15;214(2):593–605. [PMC free article] [PubMed] [Google Scholar]
  • Pain VM, Garlick PJ. Effect of streptozotocin diabetes and insulin treatment on the rate of protein synthesis in tissues of the rat in vivo. J Biol Chem. 1974 Jul 25;249(14):4510–4514. [PubMed] [Google Scholar]
  • Pain VM, Albertse EC, Garlick PJ. Protein metabolism in skeletal muscle, diaphragm, and heart of diabetic rats. Am J Physiol. 1983 Dec;245(6):E604–E610. [PubMed] [Google Scholar]
  • Rannels DE, Jefferson LS, Hjalmarson AC, Wolpert EB, Morgan HE. Maintenance of protein synthesis in hearts of diabetic animals. Biochem Biophys Res Commun. 1970 Sep 10;40(5):1110–1116. [PubMed] [Google Scholar]
  • Williams IH, Chua BH, Sahms RH, Siehl D, Morgan HE. Effects of diabetes on protein turnover in cardiac muscle. Am J Physiol. 1980 Sep;239(3):E178–E185. [PubMed] [Google Scholar]
  • Frayn KN, Maycock PF. Regulation of protein metabolism by a physiological concentration of insulin in mouse soleus and extensor digitorum longus muscles. Effects of starvation and scald injury. Biochem J. 1979 Nov 15;184(2):323–330. [PMC free article] [PubMed] [Google Scholar]
  • Li JB, Goldberg AL. Effects of food deprivation on protein synthesis and degradation in rat skeletal muscles. Am J Physiol. 1976 Aug;231(2):441–448. [PubMed] [Google Scholar]
  • Li JB, Wassner SJ. Effects of food deprivation and refeeding on total protein and actomyosin degradation. Am J Physiol. 1984 Jan;246(1 Pt 1):E32–E37. [PubMed] [Google Scholar]
  • Lowell BB, Ruderman NB, Goodman MN. Regulation of myofibrillar protein degradation in rat skeletal muscle during brief and prolonged starvation. Metabolism. 1986 Dec;35(12):1121–1127. [PubMed] [Google Scholar]
  • Curfman GD, O'Hara DS, Hopkins BE, Smith TW. Suppression of myocardial protein degradation in the rat during fasting. Effects of insulin, glucose, and leucine. Circ Res. 1980 Apr;46(4):581–589. [PubMed] [Google Scholar]
  • Long WM, Chua BH, Munger BL, Morgan HE. Effects of insulin on cardiac lysosomes and protein degradation. Fed Proc. 1984 Apr;43(5):1295–1300. [PubMed] [Google Scholar]
  • Chua BH, Long WM, Lautensack N, Lins JA, Morgan HE. Effects of diabetes on cardiac lysosomes and protein degradation. Am J Physiol. 1983 Jul;245(1):C91–100. [PubMed] [Google Scholar]
  • Kettelhut IC, Wing SS, Goldberg AL. Endocrine regulation of protein breakdown in skeletal muscle. Diabetes Metab Rev. 1988 Dec;4(8):751–772. [PubMed] [Google Scholar]
  • Ashford AJ, Pain VM. Insulin stimulation of growth in diabetic rats. Synthesis and degradation of ribosomes and total tissue protein in skeletal muscle and heart. J Biol Chem. 1986 Mar 25;261(9):4066–4070. [PubMed] [Google Scholar]
  • Goodman MN. Myofibrillar protein breakdown in skeletal muscle is diminished in rats with chronic streptozocin-induced diabetes. Diabetes. 1987 Jan;36(1):100–105. [PubMed] [Google Scholar]
  • Kadowaki M, Nagasawa T, Hirata T, Noguchi T, Naito H. Effects of insulin, amino acids and fasting on myofibrillar protein degradation in perfused hindquarters of rats. J Nutr Sci Vitaminol (Tokyo) 1985 Aug;31(4):431–440. [PubMed] [Google Scholar]
  • Haverberg LN, Deckelbaum L, Bilmazes C, Munro HN, Young VR. Myofibrillar protein turnover and urinary N-tau-methylhistidine output. Response to dietary supply of protein and energy. Biochem J. 1975 Dec;152(3):503–510. [PMC free article] [PubMed] [Google Scholar]
  • Tomas FM, Murray AJ, Jones LM. Interactive effects of insulin and corticosterone on myofibrillar protein turnover in rats as determined by N tau-methylhistidine excretion. Biochem J. 1984 Jun 1;220(2):469–479. [PMC free article] [PubMed] [Google Scholar]
  • Siehl D, Chua BH, Lautensack-Belser N, Morgan HE. Faster protein and ribosome synthesis in thyroxine-induced hypertrophy of rat heart. Am J Physiol. 1985 Mar;248(3 Pt 1):C309–C319. [PubMed] [Google Scholar]
  • Ashford AJ, Pain VM. Insulin stimulation of growth in diabetic rats. Synthesis and degradation of ribosomes and total tissue protein in skeletal muscle and heart. J Biol Chem. 1986 Mar 25;261(9):4066–4070. [PubMed] [Google Scholar]
  • Cox MD, Dalal SS, Heard CR, Millward DJ. Metabolic rate and thyroid status in rats fed diets of different protein-energy value: the importance of free T3. J Nutr. 1984 Sep;114(9):1609–1616. [PubMed] [Google Scholar]
  • Millward DJ, Brown JG, van Bueren J. The influence of plasma concentrations of tri-iodothyronine on the acute increases in insulin and muscle protein synthesis in the refed fasted rat. J Endocrinol. 1988 Sep;118(3):417–422. [PubMed] [Google Scholar]
  • Brown JG, Millward DJ. Dose response of protein turnover in rat skeletal muscle to triiodothyronine treatment. Biochim Biophys Acta. 1983 May 25;757(2):182–190. [PubMed] [Google Scholar]
  • Brown JG, Bates PC, Holliday MA, Millward DJ. Thyroid hormones and muscle protein turnover. The effect of thyroid-hormone deficiency and replacement in thryoidectomized and hypophysectomized rats. Biochem J. 1981 Mar 15;194(3):771–782. [PMC free article] [PubMed] [Google Scholar]
  • Flaim KE, Li JB, Jefferson LS. Effects of thyroxine on protein turnover in rat skeletal muscle. Am J Physiol. 1978 Aug;235(2):E231–E236. [PubMed] [Google Scholar]
  • Jepson MM, Bates PC, Millward DJ. The role of insulin and thyroid hormones in the regulation of muscle growth and protein turnover in response to dietary protein in the rat. Br J Nutr. 1988 May;59(3):397–415. [PubMed] [Google Scholar]
  • Brown JG, van Bueren J, Millward DJ. The effect of tri-iodothyronine administration on protein synthesis in the diabetic rat. Biochem J. 1983 Aug 15;214(2):637–640. [PMC free article] [PubMed] [Google Scholar]
  • DeMartino GN, Goldberg AL. Thyroid hormones control lysosomal enzyme activities in liver and skeletal muscle. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1369–1373. [PMC free article] [PubMed] [Google Scholar]
  • Parmacek MS, Decker ML, Lesch M, Samarel AM, Decker RS. Lysosomal changes during thyroxine-induced left ventricular hypertrophy in rabbits. Am J Physiol. 1986 Nov;251(5 Pt 1):C737–C747. [PubMed] [Google Scholar]
  • Zeman RJ, Bernstein PL, Ludemann R, Etlinger JD. Regulation of Ca2+-dependent protein turnover in skeletal muscle by thyroxine. Biochem J. 1986 Nov 15;240(1):269–272. [PMC free article] [PubMed] [Google Scholar]
  • Odedra BR, Dalal SS, Millward DJ. Muscle protein synthesis in the streptozotocin-diabetic rat. A possible role for corticosterone in the insensitivity to insulin infusion in vivo. Biochem J. 1982 Feb 15;202(2):363–368. [PMC free article] [PubMed] [Google Scholar]
  • Rannels SR, Jefferson LS. Effects of glucocorticoids on muscle protein turnover in perfused rat hemicorpus. Am J Physiol. 1980 Jun;238(6):E564–E572. [PubMed] [Google Scholar]
  • McGrath JA, Goldspink DF. Glucocorticoid action on protein synthesis and protein breakdown in isolated skeletal muscles. Biochem J. 1982 Sep 15;206(3):641–645. [PMC free article] [PubMed] [Google Scholar]
  • Kelly FJ, Goldspink DF. The differing responses of four muscle types to dexamethasone treatment in the rat. Biochem J. 1982 Oct 15;208(1):147–151. [PMC free article] [PubMed] [Google Scholar]
  • Kelly FJ, McGrath JA, Goldspink DF, Cullen MJ. A morphological/biochemical study on the actions of corticosteroids on rat skeletal muscle. Muscle Nerve. 1986 Jan;9(1):1–10. [PubMed] [Google Scholar]
  • Odedra BR, Millward DJ. Effect of corticosterone treatment on muscle protein turnover in adrenalectomized rats and diabetic rats maintained on insulin. Biochem J. 1982 Jun 15;204(3):663–672. [PMC free article] [PubMed] [Google Scholar]
  • Odedra BR, Bates PC, Millward DJ. Time course of the effect of catabolic doses of corticosterone on protein turnover in rat skeletal muscle and liver. Biochem J. 1983 Aug 15;214(2):617–627. [PMC free article] [PubMed] [Google Scholar]
  • Tomas FM, Murray AJ, Jones LM. Modification of glucocorticoid-induced changes in myofibrillar protein turnover in rats by protein and energy deficiency as assessed by urinary excretion of Ntau-methylhistidine. Br J Nutr. 1984 May;51(3):323–337. [PubMed] [Google Scholar]
  • Santidrian S, Moreyra M, Munro HN, Young VR. Effect of corticosterone and its route of administration on muscle protein breakdown, measured in vivo by urinary excretion of N tau-methylhistidine in rats: response to different levels of dietary protein and energy. Metabolism. 1981 Aug;30(8):798–804. [PubMed] [Google Scholar]
  • Tomas FM, Munro HN, Young VR. Effect of glucocorticoid administration on the rate of muscle protein breakdown in vivo in rats, as measured by urinary excretion of N tau-methylhistidine. Biochem J. 1979 Jan 15;178(1):139–146. [PMC free article] [PubMed] [Google Scholar]
  • Shoji S, Pennington RJ. The effect of cortisone on protein breakdown and synthesis in rat skeletal muscle. Mol Cell Endocrinol. 1977 Jan;6(3):159–169. [PubMed] [Google Scholar]
  • Kayali AG, Young VR, Goodman MN. Sensitivity of myofibrillar proteins to glucocorticoid-induced muscle proteolysis. Am J Physiol. 1987 May;252(5 Pt 1):E621–E626. [PubMed] [Google Scholar]
  • Tomas FM. Effect of corticosterone on myofibrillar protein turnover in diabetic rats as assessed by Ntau-methylhistidine excretion. Biochem J. 1982 Dec 15;208(3):593–601. [PMC free article] [PubMed] [Google Scholar]
  • McNurlan MA, Garlick PJ. Influence of nutrient intake on protein turnover. Diabetes Metab Rev. 1989 Mar;5(2):165–189. [PubMed] [Google Scholar]
  • Bennet WM, Connacher AA, Scrimgeour CM, Smith K, Rennie MJ. Increase in anterior tibialis muscle protein synthesis in healthy man during mixed amino acid infusion: studies of incorporation of [1-13C]leucine. Clin Sci (Lond) 1989 Apr;76(4):447–454. [PubMed] [Google Scholar]
  • Preedy VR, Garlick PJ. The response of muscle protein synthesis to nutrient intake in postabsorptive rats: the role of insulin and amino acids. Biosci Rep. 1986 Feb;6(2):177–183. [PubMed] [Google Scholar]
  • Flaim KE, Peavy DE, Everson WV, Jefferson LS. The role of amino acids in the regulation of protein synthesis in perfused rat liver. I. Reduction in rates of synthesis resulting from amino acid deprivation and recovery during flow-through perfusion. J Biol Chem. 1982 Mar 25;257(6):2932–2938. [PubMed] [Google Scholar]
  • Rennie MJ, Hundal HS, Babij P, MacLennan P, Taylor PM, Watt PW, Jepson MM, Millward DJ. Characteristics of a glutamine carrier in skeletal muscle have important consequences for nitrogen loss in injury, infection, and chronic disease. Lancet. 1986 Nov 1;2(8514):1008–1012. [PubMed] [Google Scholar]
  • May ME, Buse MG. Effects of branched-chain amino acids on protein turnover. Diabetes Metab Rev. 1989 May;5(3):227–245. [PubMed] [Google Scholar]
  • Walser M. Therapeutic aspects of branched-chain amino and keto acids. Clin Sci (Lond) 1984 Jan;66(1):1–15. [PubMed] [Google Scholar]
  • MacLennan PA, Brown RA, Rennie MJ. A positive relationship between protein synthetic rate and intracellular glutamine concentration in perfused rat skeletal muscle. FEBS Lett. 1987 May 4;215(1):187–191. [PubMed] [Google Scholar]
  • Wu GY, Thompson JR. The effect of glutamine on protein turnover in chick skeletal muscle in vitro. Biochem J. 1990 Jan 15;265(2):593–598. [PMC free article] [PubMed] [Google Scholar]
  • MacLennan PA, Smith K, Weryk B, Watt PW, Rennie MJ. Inhibition of protein breakdown by glutamine in perfused rat skeletal muscle. FEBS Lett. 1988 Sep 12;237(1-2):133–136. [PubMed] [Google Scholar]
  • Jepson MM, Millward DJ. Effect of the cyclo-oxygenase inhibitor fenbufen on muscle and liver protein metabolism, muscle glutamine and plasma insulin in endotoxaemic rats. Clin Sci (Lond) 1989 Jul;77(1):13–20. [PubMed] [Google Scholar]
  • Jepson MM, Bates PC, Broadbent P, Pell JM, Millward DJ. Relationship between glutamine concentration and protein synthesis in rat skeletal muscle. Am J Physiol. 1988 Aug;255(2 Pt 1):E166–E172. [PubMed] [Google Scholar]
  • Garlick PJ, Grant I. Amino acid infusion increases the sensitivity of muscle protein synthesis in vivo to insulin. Effect of branched-chain amino acids. Biochem J. 1988 Sep 1;254(2):579–584. [PMC free article] [PubMed] [Google Scholar]
  • Stehle P, Zander J, Mertes N, Albers S, Puchstein C, Lawin P, Fürst P. Effect of parenteral glutamine peptide supplements on muscle glutamine loss and nitrogen balance after major surgery. Lancet. 1989 Feb 4;1(8632):231–233. [PubMed] [Google Scholar]
  • Albers S, Wernerman J, Stehle P, Vinnars E, Fürst P. Availability of amino acids supplied by constant intravenous infusion of synthetic dipeptides in healthy man. Clin Sci (Lond) 1989 Jun;76(6):643–648. [PubMed] [Google Scholar]
  • Adibi SA. Experimental basis for use of peptides as substrates for parenteral nutrition: a review. Metabolism. 1987 Oct;36(10):1001–1011. [PubMed] [Google Scholar]
  • Rennie MJ. Muscle protein turnover and the wasting due to injury and disease. Br Med Bull. 1985 Jul;41(3):257–264. [PubMed] [Google Scholar]
  • McNurlan MA, Fern EB, Garlick PJ. Failure of leucine to stimulate protein synthesis in vivo. Biochem J. 1982 Jun 15;204(3):831–838. [PMC free article] [PubMed] [Google Scholar]
  • Preedy VR, Garlick PJ. The effect of glucagon administration on protein synthesis in skeletal muscles, heart and liver in vivo. Biochem J. 1985 Jun 15;228(3):575–581. [PMC free article] [PubMed] [Google Scholar]
  • Preedy VR, Garlick PJ. Inhibition of protein synthesis by glucagon in different rat muscles and protein fractions in vivo and in the perfused rat hemicorpus. Biochem J. 1988 May 1;251(3):727–732. [PMC free article] [PubMed] [Google Scholar]
  • Nair KS, Halliday D, Matthews DE, Welle SL. Hyperglucagonemia during insulin deficiency accelerates protein catabolism. Am J Physiol. 1987 Aug;253(2 Pt 1):E208–E213. [PubMed] [Google Scholar]
  • Kochel PJ, Kira Y, Gordon EE, Morgan HE. Effects of noncarbohydrate substrates on protein synthesis in hearts from fed and fasted rats. J Mol Cell Cardiol. 1984 Apr;16(4):371–383. [PubMed] [Google Scholar]
  • Rannels DE, Hjalmarson AC, Morgan HE. Effects of noncarbohydrate substrates on protein synthesis in muscle. Am J Physiol. 1974 Mar;226(3):528–539. [PubMed] [Google Scholar]
  • Chua B, Siehl DL, Morgan HE. Effect of leucine and metabolites of branched chain amino acids on protein turnover in heart. J Biol Chem. 1979 Sep 10;254(17):8358–8362. [PubMed] [Google Scholar]
  • Miles JM, Nissen SL, Rizza RA, Gerich JE, Haymond MW. Failure of infused beta-hydroxybutyrate to decrease proteolysis in man. Diabetes. 1983 Mar;32(3):197–205. [PubMed] [Google Scholar]
  • Nair KS, Welle SL, Halliday D, Campbell RG. Effect of beta-hydroxybutyrate on whole-body leucine kinetics and fractional mixed skeletal muscle protein synthesis in humans. J Clin Invest. 1988 Jul;82(1):198–205. [PMC free article] [PubMed] [Google Scholar]
  • Sara VR, Hall K. Insulin-like growth factors and their binding proteins. Physiol Rev. 1990 Jul;70(3):591–614. [PubMed] [Google Scholar]
  • Humbel RE. Insulin-like growth factors I and II. Eur J Biochem. 1990 Jul 5;190(3):445–462. [PubMed] [Google Scholar]
  • Florini JR. Hormonal control of muscle growth. Muscle Nerve. 1987 Sep;10(7):577–598. [PubMed] [Google Scholar]
  • Millward DJ. The hormonal control of protein turnover. Clin Nutr. 1990 Jun;9(3):115–126. [PubMed] [Google Scholar]
  • Millward DJ, Rivers JP. The need for indispensable amino acids: the concept of the anabolic drive. Diabetes Metab Rev. 1989 Mar;5(2):191–211. [PubMed] [Google Scholar]
  • Garlick PJ, Fern M, Preedy VR. The effect of insulin infusion and food intake on muscle protein synthesis in postabsorptive rats. Biochem J. 1983 Mar 15;210(3):669–676. [PMC free article] [PubMed] [Google Scholar]
  • Garlick PJ, McNurlan MA, McHardy KC. Factors controlling the disposition of primary nutrients. Proc Nutr Soc. 1988 Jul;47(2):169–176. [PubMed] [Google Scholar]
  • Garlick PJ, Grant I, Glennie RT. Short-term effects of corticosterone treatment on muscle protein synthesis in relation to the response to feeding. Biochem J. 1987 Dec 1;248(2):439–442. [PMC free article] [PubMed] [Google Scholar]
  • Millward DJ, Odedra B, Bates PC. The role of insulin, corticosterone and other factors in the acute recovery of muscle protein synthesis on refeeding food-deprived rats. Biochem J. 1983 Dec 15;216(3):583–587. [PMC free article] [PubMed] [Google Scholar]
  • Gelfand RA, Barrett EJ. Effect of physiologic hyperinsulinemia on skeletal muscle protein synthesis and breakdown in man. J Clin Invest. 1987 Jul;80(1):1–6. [PMC free article] [PubMed] [Google Scholar]
  • Oddy VH, Lindsay DB, Barker PJ, Northrop AJ. Effect of insulin on hind-limb and whole-body leucine and protein metabolism in fed and fasted lambs. Br J Nutr. 1987 Nov;58(3):437–452. [PubMed] [Google Scholar]
  • Tessari P, Inchiostro S, Biolo G, Trevisan R, Fantin G, Marescotti MC, Iori E, Tiengo A, Crepaldi G. Differential effects of hyperinsulinemia and hyperaminoacidemia on leucine-carbon metabolism in vivo. Evidence for distinct mechanisms in regulation of net amino acid deposition. J Clin Invest. 1987 Apr;79(4):1062–1069. [PMC free article] [PubMed] [Google Scholar]
  • Alvestrand A, Defronzo RA, Smith D, Wahren J. Influence of hyperinsulinaemia on intracellular amino acid levels and amino acid exchange across splanchnic and leg tissues in uraemia. Clin Sci (Lond) 1988 Feb;74(2):155–163. [PubMed] [Google Scholar]
  • Castellino P, Luzi L, Simonson DC, Haymond M, DeFronzo RA. Effect of insulin and plasma amino acid concentrations on leucine metabolism in man. Role of substrate availability on estimates of whole body protein synthesis. J Clin Invest. 1987 Dec;80(6):1784–1793. [PMC free article] [PubMed] [Google Scholar]
  • Bennet WM, Connacher AA, Smith K, Jung RT, Rennie MJ. Inability to stimulate skeletal muscle or whole body protein synthesis in type 1 (insulin-dependent) diabetic patients by insulin-plus-glucose during amino acid infusion: studies of incorporation and turnover of tracer L-[1-13C]leucine. Diabetologia. 1990 Jan;33(1):43–51. [PubMed] [Google Scholar]
  • Bennet WM, Connacher AA, Scrimgeour CM, Jung RT, Rennie MJ. Euglycemic hyperinsulinemia augments amino acid uptake by human leg tissues during hyperaminoacidemia. Am J Physiol. 1990 Aug;259(2 Pt 1):E185–E194. [PubMed] [Google Scholar]
  • Hershey JW. Protein phosphorylation controls translation rates. J Biol Chem. 1989 Dec 15;264(35):20823–20826. [PubMed] [Google Scholar]
  • Kramer G. Two phosphorylation sites on eIF-2 alpha. FEBS Lett. 1990 Jul 16;267(2):181–182. [PubMed] [Google Scholar]
  • Dholakia JN, Wahba AJ. Phosphorylation of the guanine nucleotide exchange factor from rabbit reticulocytes regulates its activity in polypeptide chain initiation. Proc Natl Acad Sci U S A. 1988 Jan;85(1):51–54. [PMC free article] [PubMed] [Google Scholar]
  • Kaspar RL, Rychlik W, White MW, Rhoads RE, Morris DR. Simultaneous cytoplasmic redistribution of ribosomal protein L32 mRNA and phosphorylation of eukaryotic initiation factor 4E after mitogenic stimulation of Swiss 3T3 cells. J Biol Chem. 1990 Mar 5;265(7):3619–3622. [PubMed] [Google Scholar]
  • Morley SJ, Traugh JA. Phorbol esters stimulate phosphorylation of eukaryotic initiation factors 3, 4B, and 4F. J Biol Chem. 1989 Feb 15;264(5):2401–2404. [PubMed] [Google Scholar]
  • Morley SJ, Traugh JA. Differential stimulation of phosphorylation of initiation factors eIF-4F, eIF-4B, eIF-3, and ribosomal protein S6 by insulin and phorbol esters. J Biol Chem. 1990 Jun 25;265(18):10611–10616. [PubMed] [Google Scholar]
  • Boulton TG, Gregory JS, Jong SM, Wang LH, Ellis L, Cobb MH. Evidence for insulin-dependent activation of S6 and microtubule-associated protein-2 kinases via a human insulin receptor/v-ros hybrid. J Biol Chem. 1990 Feb 15;265(5):2713–2719. [PubMed] [Google Scholar]
  • Sturgill TW, Ray LB, Erikson E, Maller JL. Insulin-stimulated MAP-2 kinase phosphorylates and activates ribosomal protein S6 kinase II. Nature. 1988 Aug 25;334(6184):715–718. [PubMed] [Google Scholar]
  • Blenis J, Kuo CJ, Erikson RL. Identification of a ribosomal protein S6 kinase regulated by transformation and growth-promoting stimuli. J Biol Chem. 1987 Oct 25;262(30):14373–14376. [PubMed] [Google Scholar]
  • Harmon CS, Proud CG, Pain VM. Effects of starvation, diabetes and acute insulin treatment on the regulation of polypeptide-chain initiation in rat skeletal muscle. Biochem J. 1984 Nov 1;223(3):687–696. [PMC free article] [PubMed] [Google Scholar]
  • Kelly FJ, Jefferson LS. Control of peptide-chain initiation in rat skeletal muscle. Development of methods for preparation of native ribosomal subunits and analysis of the effect of insulin on formation of 40 S initiation complexes. J Biol Chem. 1985 Jun 10;260(11):6677–6683. [PubMed] [Google Scholar]
  • Towle CA, Mankin HJ, Avruch J, Treadwell BV. Insulin promoted decrease in the phosphorylation of protein synthesis initiation factor eIF-2. Biochem Biophys Res Commun. 1984 May 31;121(1):134–140. [PubMed] [Google Scholar]
  • Cox S, Redpath NT, Proud CG. Regulation of polypeptide-chain initiation in rat skeletal muscle. Starvation does not alter the activity or phosphorylation state of initiation factor eIF-2. FEBS Lett. 1988 Nov 7;239(2):333–338. [PubMed] [Google Scholar]
  • Kimball SR, Jefferson LS. Effect of diabetes on guanine nucleotide exchange factor activity in skeletal muscle and heart. Biochem Biophys Res Commun. 1988 Oct 31;156(2):706–711. [PubMed] [Google Scholar]
  • Sommercorn J, Mulligan JA, Lozeman FJ, Krebs EG. Activation of casein kinase II in response to insulin and to epidermal growth factor. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8834–8838. [PMC free article] [PubMed] [Google Scholar]
  • Dholakia JN, Mueser TC, Woodley CL, Parkhurst LJ, Wahba AJ. The association of NADPH with the guanine nucleotide exchange factor from rabbit reticulocytes: a role of pyridine dinucleotides in eukaryotic polypeptide chain initiation. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6746–6750. [PMC free article] [PubMed] [Google Scholar]
  • Palmer RM, Wahle KW. Protein synthesis and degradation in isolated muscle. Effect of omega 3 and omega 6 fatty acids. Biochem J. 1987 Mar 1;242(2):615–618. [PMC free article] [PubMed] [Google Scholar]
  • Rodemann HP, Goldberg AL. Arachidonic acid, prostaglandin E2 and F2 alpha influence rates of protein turnover in skeletal and cardiac muscle. J Biol Chem. 1982 Feb 25;257(4):1632–1638. [PubMed] [Google Scholar]
  • Smith RH, Palmer RM, Reeds PJ. Protein synthesis in isolated rabbit forelimb muscles. The possible role of metabolites of arachidonic acid in the response to intermittent stretching. Biochem J. 1983 Jul 15;214(1):153–161. [PMC free article] [PubMed] [Google Scholar]
  • Barnett JG, Ellis S. Prostaglandin E2 and the regulation of protein degradation in skeletal muscle. Muscle Nerve. 1987 Jul-Aug;10(6):556–559. [PubMed] [Google Scholar]
  • McElligott MA, Chaung LY, Baracos V, Gulve EA. Prostaglandin production in myotube cultures. Influence on protein turnover. Biochem J. 1988 Aug 1;253(3):745–749. [PMC free article] [PubMed] [Google Scholar]
  • Palmer RM, Bain P, Reeds PJ. Time dependent effect of indomethacin on the stimulation of protein synthesis in isolated rabbit muscle by insulin. Biosci Rep. 1986 May;6(5):485–491. [PubMed] [Google Scholar]
  • Reeds PJ, Palmer RM. The possible involvement of prostaglandin F2 alpha in the stimulation of muscle protein synthesis by insulin. Biochem Biophys Res Commun. 1983 Nov 15;116(3):1084–1090. [PubMed] [Google Scholar]
  • Palmer RM, Campbell GP, Whitelaw PF, Brown DS, Bain PA, Hesketh JE. The cyclo-oxygenase inhibitors indomethacin and ibuprofen inhibit the insulin-induced stimulation of ribosomal RNA synthesis in L6 myoblasts. Biochem J. 1989 Nov 15;264(1):101–106. [PMC free article] [PubMed] [Google Scholar]
  • Reeds PJ, Hay SM, Glennie RT, Mackie WS, Garlick PJ. The effect of indomethacin on the stimulation of protein synthesis by insulin in young post-absorptive rats. Biochem J. 1985 Apr 1;227(1):255–261. [PMC free article] [PubMed] [Google Scholar]
  • McNurlan MA, McHardy KC, Broom J, Milne E, Fearns LM, Reeds PJ, Garlick PJ. The effect of indomethacin on the response of protein synthesis to feeding in rats and man. Clin Sci (Lond) 1987 Jul;73(1):69–75. [PubMed] [Google Scholar]
  • Smith DM, Sugden PH. Effects of pressure overload and insulin on protein turnover in the perfused rat heart. Prostaglandins are not involved although their synthesis is stimulated by insulin. Biochem J. 1987 Apr 15;243(2):473–479. [PMC free article] [PubMed] [Google Scholar]
  • Kraenzlin ME, Keller U, Keller A, Thélin A, Arnaud MJ, Stauffacher W. Elevation of plasma epinephrine concentrations inhibits proteolysis and leucine oxidation in man via beta-adrenergic mechanisms. J Clin Invest. 1989 Aug;84(2):388–393. [PMC free article] [PubMed] [Google Scholar]
  • Li JB, Jefferson LS. Effect of isoproterenol on amino acid levels and protein turnover in skeletal muscle. Am J Physiol. 1977 Feb;232(2):E243–E249. [PubMed] [Google Scholar]
  • Nie ZT, Lisjö S, Karlson E, Goertz G, Henriksson J. In-vitro stimulation of the rat epitrochlearis muscle. I. Contractile activity per se affects myofibrillar protein degradation and amino acid metabolism. Acta Physiol Scand. 1989 Apr;135(4):513–521. [PubMed] [Google Scholar]
  • WOOL IG. Incorporation of C14-amino acids into protein of isolated diaphragms: effect of epinephrine and norepinephrine and norepinephrine. Am J Physiol. 1960 Jan;198:54–56. [PubMed] [Google Scholar]
  • Yang YT, McElligott MA. Multiple actions of beta-adrenergic agonists on skeletal muscle and adipose tissue. Biochem J. 1989 Jul 1;261(1):1–10. [PMC free article] [PubMed] [Google Scholar]
  • Nutting DF. Anabolic effects of catecholamines in diaphragm muscle from hypophysectomized rats. Endocrinology. 1982 Feb;110(2):307–317. [PubMed] [Google Scholar]
  • Lewis SE, Anderson P, Goldspink DF. The effects of calcium on protein turnover in skeletal muscles of the rat. Biochem J. 1982 Apr 15;204(1):257–264. [PMC free article] [PubMed] [Google Scholar]
  • Ezrailson EG, Entman ML, Garber AJ. Adrenergic and serotonergic regulation of skeletal muscle metabolism in rat. I. The effects of adrenergic and serotonergic antagonists on the regulation of muscle amino acid release, glycogenolysis, and cyclic nucleotide levels. J Biol Chem. 1983 Oct 25;258(20):12494–12498. [PubMed] [Google Scholar]
  • Garber AJ, Karl IE, Kipnis DM. Alanine and glutamine synthesis and release from skeletal muscle. IV. beta-Adrenergic inhibition of amino acid release. J Biol Chem. 1976 Feb 10;251(3):851–857. [PubMed] [Google Scholar]
  • Nie ZT, Wallberg-Henriksson H, Johansson S, Henriksson J. Effects of adrenaline and prior exercise on the release of alanine, glutamine and glutamate from incubated rat skeletal muscle. Acta Physiol Scand. 1989 Jul;136(3):395–401. [PubMed] [Google Scholar]
  • Emery PW, Rothwell NJ, Stock MJ, Winter PD. Chronic effects of beta 2-adrenergic agonists on body composition and protein synthesis in the rat. Biosci Rep. 1984 Jan;4(1):83–91. [PubMed] [Google Scholar]
  • Maltin CA, Delday MI, Reeds PJ. The effect of a growth promoting drug, clenbuterol, on fibre frequency and area in hind limb muscles from young male rats. Biosci Rep. 1986 Mar;6(3):293–299. [PubMed] [Google Scholar]
  • Reeds PJ, Hay SM, Dorwood PM, Palmer RM. Stimulation of muscle growth by clenbuterol: lack of effect on muscle protein biosynthesis. Br J Nutr. 1986 Jul;56(1):249–258. [PubMed] [Google Scholar]
  • Maltin CA, Reeds PJ, Delday MI, Hay SM, Smith FG, Lobley GE. Inhibition and reversal of denervation-induced atrophy by the beta-agonist growth promoter, clenbuterol. Biosci Rep. 1986 Sep;6(9):811–818. [PubMed] [Google Scholar]
  • Zeman RJ, Ludemann R, Etlinger JD. Clenbuterol, a beta 2-agonist, retards atrophy in denervated muscles. Am J Physiol. 1987 Jan;252(1 Pt 1):E152–E155. [PubMed] [Google Scholar]
  • Maltin CA, Delday MI, Hay SM, Smith FG, Lobley GE, Reeds PJ. The effect of the anabolic agent, clenbuterol, on overloaded rat skeletal muscle. Biosci Rep. 1987 Feb;7(2):143–149. [PubMed] [Google Scholar]
  • Maltin CA, Delday MI, Hay SM, Smith FG, Reeds PJ. Propranolol apparently separates the physical and compositional characteristics of muscle growth induced by clenbuterol. Biosci Rep. 1987 Jan;7(1):51–57. [PubMed] [Google Scholar]
  • Maltin CA, Hay SM, Delday MI, Reeds PJ, Palmer RM. Evidence that the hypertrophic action of clenbuterol on denervated rat muscle is not propranolol-sensitive. Br J Pharmacol. 1989 Apr;96(4):817–822. [PMC free article] [PubMed] [Google Scholar]
  • Reeds PJ, Hay SM, Dorward PM, Palmer RM. The effect of beta-agonists and antagonists on muscle growth and body composition of young rats (Rattus sp.). Comp Biochem Physiol C. 1988;89(2):337–341. [PubMed] [Google Scholar]
  • Maltin CA, Hay SM, Delday MI, Lobley GE, Reeds PJ. The action of the beta-agonist clenbuterol on protein metabolism in innervated and denervated phasic muscles. Biochem J. 1989 Aug 1;261(3):965–971. [PMC free article] [PubMed] [Google Scholar]
  • Babij P, Booth FW. Clenbuterol prevents or inhibits loss of specific mRNAs in atrophying rat skeletal muscle. Am J Physiol. 1988 May;254(5 Pt 1):C657–C660. [PubMed] [Google Scholar]
  • Fell RD, Terblanche SE, Winder WW, Holloszy JO. Adaptive responses of rats to prolonged treatment with epinephrine. Am J Physiol. 1981 Jul;241(1):C55–C58. [PubMed] [Google Scholar]
  • Tarazi RC, Sen S, Saragoca M, Khairallah P. The multifactorial role of catecholamines in hypertensive cardiac hypertrophy. Eur Heart J. 1982 Apr;3 (Suppl A):103–110. [PubMed] [Google Scholar]
  • Zimmer HG, Peffer H. Metabolic aspects of the development of experimental cardiac hypertrophy. Basic Res Cardiol. 1986;81 (Suppl 1):127–137. [PubMed] [Google Scholar]
  • Clarke K, Ward LC. Protein synthesis in the early stages of cardiac hypertrophy. Int J Biochem. 1983;15(10):1267–1271. [PubMed] [Google Scholar]
  • Fuller SJ, Sugden PH. Acute inhibition of rat heart protein synthesis in vitro during beta-adrenergic stimulation or hypoxia. Am J Physiol. 1988 Oct;255(4 Pt 1):E537–E547. [PubMed] [Google Scholar]
  • Källfelt BJ, Hjalmarson AC, Isaksson OG. In vitro effects of catecholamines on protein synthesis in perfused rat heart. J Mol Cell Cardiol. 1976 Oct;8(10):787–802. [PubMed] [Google Scholar]
  • Xenophontos XP, Watson PA, Chua BH, Haneda T, Morgan HE. Increased cyclic AMP content accelerates protein synthesis in rat heart. Circ Res. 1989 Sep;65(3):647–656. [PubMed] [Google Scholar]
  • Dubus I, Samuel JL, Marotte F, Delcayre C, Rappaport L. Beta-adrenergic agonists stimulate the synthesis of noncontractile but not contractile proteins in cultured myocytes isolated from adult rat heart. Circ Res. 1990 Mar;66(3):867–874. [PubMed] [Google Scholar]
  • Lockwood TD. Simultaneous response of myocardial contractility and a major proteolytic process to beta-adrenergic-receptor occupancy in the Langendorff isolated perfused rat heart. Biochem J. 1985 Oct 15;231(2):299–308. [PMC free article] [PubMed] [Google Scholar]
  • Lockwood TD. Distinction between major chloroquine-inhibitable and adrenergic-responsive pathways of protein degradation and their relation to tissue ATP content in the Langendorff isolated perfused rat heart. Biochem J. 1988 Apr 15;251(2):341–346. [PMC free article] [PubMed] [Google Scholar]
  • Chua BH, Siehl DL, Morgan HE. Catecholamines, glucagon, energy metabolism and protein degradation in rat heart. Cardioscience. 1990 Mar;1(1):19–28. [PubMed] [Google Scholar]
  • Moalic JM, Bauters C, Himbert D, Bercovici J, Mouas C, Guicheney P, Baudoin-Legros M, Rappaport L, Emanoil-Ravier R, Mezger V, et al. Phenylephrine, vasopressin and angiotensin II as determinants of proto-oncogene and heat-shock protein gene expression in adult rat heart and aorta. J Hypertens. 1989 Mar;7(3):195–201. [PubMed] [Google Scholar]
  • Simpson PC. Proto-oncogenes and cardiac hypertrophy. Annu Rev Physiol. 1989;51:189–202. [PubMed] [Google Scholar]
  • Simpson P, Bishopric N, Coughlin S, Karliner J, Ordahl C, Starksen N, Tsao T, White N, Williams L. Dual trophic effects of the alpha 1-adrenergic receptor in cultured neonatal rat heart muscle cells. J Mol Cell Cardiol. 1986 Nov;18 (Suppl 5):45–58. [PubMed] [Google Scholar]
  • McDermott PJ, Morgan HE. Contraction modulates the capacity for protein synthesis during growth of neonatal heart cells in culture. Circ Res. 1989 Mar;64(3):542–553. [PubMed] [Google Scholar]
  • Simpson P. Stimulation of hypertrophy of cultured neonatal rat heart cells through an alpha 1-adrenergic receptor and induction of beating through an alpha 1- and beta 1-adrenergic receptor interaction. Evidence for independent regulation of growth and beating. Circ Res. 1985 Jun;56(6):884–894. [PubMed] [Google Scholar]
  • Meidell RS, Sen A, Henderson SA, Slahetka MF, Chien KR. Alpha 1-adrenergic stimulation of rat myocardial cells increases protein synthesis. Am J Physiol. 1986 Nov;251(5 Pt 2):H1076–H1084. [PubMed] [Google Scholar]
  • Brown JH, Buxton IL, Brunton LL. Alpha 1-adrenergic and muscarinic cholinergic stimulation of phosphoinositide hydrolysis in adult rat cardiomyocytes. Circ Res. 1985 Oct;57(4):532–537. [PubMed] [Google Scholar]
  • Guse AH, Berg I, Gercken G. Metabolism of inositol phosphates in alpha 1-adrenoceptor-stimulated and homogenized cardiac myocytes of adult rats. Biochem J. 1989 Jul 1;261(1):89–92. [PMC free article] [PubMed] [Google Scholar]
  • Woodcock EA, White LB, Smith AI, McLeod JK. Stimulation of phosphatidylinositol metabolism in the isolated, perfused rat heart. Circ Res. 1987 Nov;61(5):625–631. [PubMed] [Google Scholar]
  • Lee HR, Henderson SA, Reynolds R, Dunnmon P, Yuan D, Chien KR. Alpha 1-adrenergic stimulation of cardiac gene transcription in neonatal rat myocardial cells. Effects on myosin light chain-2 gene expression. J Biol Chem. 1988 May 25;263(15):7352–7358. [PubMed] [Google Scholar]
  • Fuller SJ, Gaitanaki CJ, Sugden PH. Effects of catecholamines on protein synthesis in cardiac myocytes and perfused hearts isolated from adult rats. Stimulation of translation is mediated through the alpha 1-adrenoceptor. Biochem J. 1990 Mar 15;266(3):727–736. [PMC free article] [PubMed] [Google Scholar]
  • Henrich CJ, Simpson PC. Differential acute and chronic response of protein kinase C in cultured neonatal rat heart myocytes to alpha 1-adrenergic and phorbol ester stimulation. J Mol Cell Cardiol. 1988 Dec;20(12):1081–1085. [PubMed] [Google Scholar]
  • Rattigan S, Appleby GJ, Edwards SJ, McKinstry WJ, Colquhoun EQ, Clark MG, Richter EA. Alpha-adrenergic receptors in rat skeletal muscle. Biochem Biophys Res Commun. 1986 May 14;136(3):1071–1077. [PubMed] [Google Scholar]
  • Baracos V, Greenberg RE, Goldberg AL. Influence of calcium and other divalent cations on protein turnover in rat skeletal muscle. Am J Physiol. 1986 Jun;250(6 Pt 1):E702–E710. [PubMed] [Google Scholar]
  • Hasselgren PO, Säljö A, Seeman T. Protein turnover in skeletal muscle tissue from patients with hyperparathyroidism and the effect of calcium in vitro. Eur Surg Res. 1986;18(6):337–342. [PubMed] [Google Scholar]
  • Kameyama T, Etlinger JD. Calcium-dependent regulation of protein synthesis and degradation in muscle. Nature. 1979 May 24;279(5711):344–346. [PubMed] [Google Scholar]
  • Rodemann HP, Waxman L, Goldberg AL. The stimulation of protein degradation in muscle by Ca2+ is mediated by prostaglandin E2 and does not require the calcium-activated protease. J Biol Chem. 1982 Aug 10;257(15):8716–8723. [PubMed] [Google Scholar]
  • Sugden PH. The effects of calcium ions, ionophore A23187 and inhibition of energy metabolism on protein degradation in the rat diaphragm and epitrochlearis muscles in vitro. Biochem J. 1980 Sep 15;190(3):593–603. [PMC free article] [PubMed] [Google Scholar]
  • Benson DW, Hasselgren PO, Hiyama DT, James JH, Li S, Rigel DF, Fischer JE. Effect of sepsis on calcium uptake and content in skeletal muscle and regulation in vitro by calcium of total and myofibrillar protein breakdown in control and septic muscle: results from a preliminary study. Surgery. 1989 Jul;106(1):87–93. [PubMed] [Google Scholar]
  • Goodman MN. Differential effects of acute changes in cell Ca2+ concentration on myofibrillar and non-myofibrillar protein breakdown in the rat extensor digitorum longus muscle in vitro. Assessment by production of tyrosine and N tau-methylhistidine. Biochem J. 1987 Jan 1;241(1):121–127. [PMC free article] [PubMed] [Google Scholar]
  • Brostrom CO, Brostrom MA. Calcium-dependent regulation of protein synthesis in intact mammalian cells. Annu Rev Physiol. 1990;52:577–590. [PubMed] [Google Scholar]
  • Haneda T, Watson PA, Morgan HE. Elevated aortic pressure, calcium uptake, and protein synthesis in rat heart. J Mol Cell Cardiol. 1989 Feb;21 (Suppl 1):131–138. [PubMed] [Google Scholar]
  • Schreiber SS, Oratz M, Rothschild MA, Smith D. Increased cardiac contractility in high calcium perfusion and protein synthesis. J Mol Cell Cardiol. 1977 Aug;9(8):661–669. [PubMed] [Google Scholar]
  • Gordon EE, Kira Y, Demers LM, Morgan HE. Aortic pressure as a determinant of cardiac protein degradation. Am J Physiol. 1986 Jun;250(6 Pt 1):C932–C938. [PubMed] [Google Scholar]
  • Starksen NF, Simpson PC, Bishopric N, Coughlin SR, Lee WM, Escobedo JA, Williams LT. Cardiac myocyte hypertrophy is associated with c-myc protooncogene expression. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8348–8350. [PMC free article] [PubMed] [Google Scholar]
  • Dunnmon PM, Iwaki K, Henderson SA, Sen A, Chien KR. Phorbol esters induce immediate-early genes and activate cardiac gene transcription in neonatal rat myocardial cells. J Mol Cell Cardiol. 1990 Aug;22(8):901–910. [PubMed] [Google Scholar]
  • Goodman MN. Acute alterations in sodium flux in vitro lead to decreased myofibrillar protein breakdown in rat skeletal muscle. Biochem J. 1987 Oct 1;247(1):151–156. [PMC free article] [PubMed] [Google Scholar]
  • Frelin C, Vigne P, Ladoux A, Lazdunski M. The regulation of the intracellular pH in cells from vertebrates. Eur J Biochem. 1988 May 16;174(1):3–14. [PubMed] [Google Scholar]
  • Grinstein S, Rotin D, Mason MJ. Na+/H+ exchange and growth factor-induced cytosolic pH changes. Role in cellular proliferation. Biochim Biophys Acta. 1989 Jan 18;988(1):73–97. [PubMed] [Google Scholar]
  • Thomason DB, Booth FW. Atrophy of the soleus muscle by hindlimb unweighting. J Appl Physiol (1985) 1990 Jan;68(1):1–12. [PubMed] [Google Scholar]
  • Babij P, Booth FW. Alpha-actin and cytochrome c mRNAs in atrophied adult rat skeletal muscle. Am J Physiol. 1988 May;254(5 Pt 1):C651–C656. [PubMed] [Google Scholar]
  • Howard G, Steffen JM, Geoghegan TE. Transcriptional regulation of decreased protein synthesis during skeletal muscle unloading. J Appl Physiol (1985) 1989 Mar;66(3):1093–1098. [PubMed] [Google Scholar]
  • Morrison PR, Montgomery JA, Wong TS, Booth FW. Cytochrome c protein-synthesis rates and mRNA contents during atrophy and recovery in skeletal muscle. Biochem J. 1987 Jan 1;241(1):257–263. [PMC free article] [PubMed] [Google Scholar]
  • Morrison PR, Muller GW, Booth FW. Actin synthesis rate and mRNA level increase during early recovery of atrophied muscle. Am J Physiol. 1987 Aug;253(2 Pt 1):C205–C209. [PubMed] [Google Scholar]
  • Morrison PR, Biggs RB, Booth FW. Daily running for 2 wk and mRNAs for cytochrome c and alpha-actin in rat skeletal muscle. Am J Physiol. 1989 Nov;257(5 Pt 1):C936–C939. [PubMed] [Google Scholar]
  • Thomason DB, Herrick RE, Surdyka D, Baldwin KM. Time course of soleus muscle myosin expression during hindlimb suspension and recovery. J Appl Physiol (1985) 1987 Jul;63(1):130–137. [PubMed] [Google Scholar]
  • Thomason DB, Biggs RB, Booth FW. Protein metabolism and beta-myosin heavy-chain mRNA in unweighted soleus muscle. Am J Physiol. 1989 Aug;257(2 Pt 2):R300–R305. [PubMed] [Google Scholar]
  • Bandman E, Strohman RC. Increased K+ inhibits spontaneous contractions reduces myosin accumulation in cultured chick myotubes. J Cell Biol. 1982 Jun;93(3):698–704. [PMC free article] [PubMed] [Google Scholar]
  • Cerny LC, Bandman E. Contractile activity is required for the expression of neonatal myosin heavy chain in embryonic chick pectoral muscle cultures. J Cell Biol. 1986 Dec;103(6 Pt 1):2153–2161. [PMC free article] [PubMed] [Google Scholar]
  • Vandenburgh HH, Hatfaludy S, Karlisch P, Shansky J. Skeletal muscle growth is stimulated by intermittent stretch-relaxation in tissue culture. Am J Physiol. 1989 Mar;256(3 Pt 1):C674–C682. [PubMed] [Google Scholar]
  • Babij P, Booth FW. Biochemistry of exercise. Advances in molecular biology relevant to adaptation of muscle to exercise. Sports Med. 1988 Mar;5(3):137–143. [PubMed] [Google Scholar]
  • Booth FW. Perspectives on molecular and cellular exercise physiology. J Appl Physiol (1985) 1988 Oct;65(4):1461–1471. [PubMed] [Google Scholar]
  • Vandenburgh HH. Motion into mass: how does tension stimulate muscle growth? Med Sci Sports Exerc. 1987 Oct;19(5 Suppl):S142–S149. [PubMed] [Google Scholar]
  • Booth FW, Nicholson WF, Watson PA. Influence of muscle use on protein synthesis and degradation. Exerc Sport Sci Rev. 1982;10:27–48. [PubMed] [Google Scholar]
  • Bylund-Fellenius AC, Ojamaa KM, Flaim KE, Li JB, Wassner SJ, Jefferson LS. Protein synthesis versus energy state in contracting muscles of perfused rat hindlimb. Am J Physiol. 1984 Apr;246(4 Pt 1):E297–E305. [PubMed] [Google Scholar]
  • Davis TA, Karl IE. Response of muscle protein turnover to insulin after acute exercise and training. Biochem J. 1986 Dec 15;240(3):651–657. [PMC free article] [PubMed] [Google Scholar]
  • Dohm GL, Kasperek GJ, Tapscott EB, Beecher GR. Effect of exercise on synthesis and degradation of muscle protein. Biochem J. 1980 Apr 15;188(1):255–262. [PMC free article] [PubMed] [Google Scholar]
  • Dohm GL, Israel RG, Breedlove RL, Williams RT, Askew EW. Biphasic changes in 3-methylhistidine excretion in humans after exercise. Am J Physiol. 1985 May;248(5 Pt 1):E588–E592. [PubMed] [Google Scholar]
  • Dohm GL, Tapscott EB, Kasperek GJ. Protein degradation during endurance exercise and recovery. Med Sci Sports Exerc. 1987 Oct;19(5 Suppl):S166–S171. [PubMed] [Google Scholar]
  • Kasperek GJ, Snider RD. Total and myofibrillar protein degradation in isolated soleus muscles after exercise. Am J Physiol. 1989 Jul;257(1 Pt 1):E1–E5. [PubMed] [Google Scholar]
  • Wong TS, Booth FW. Skeletal muscle enlargement with weight-lifting exercise by rats. J Appl Physiol (1985) 1988 Aug;65(2):950–954. [PubMed] [Google Scholar]
  • Cooper G., 4th Cardiocyte adaptation to chronically altered load. Annu Rev Physiol. 1987;49:501–518. [PubMed] [Google Scholar]
  • Morgan HE, Gordon EE, Kira Y, Siehl DL, Watson PA, Chua BH. Wiggers Award lecture. Biochemical correlates of myocardial hypertrophy. Physiologist. 1985 Feb;28(1):18–27. [PubMed] [Google Scholar]
  • Morgan HE, Gordon EE, Kira Y, Chua HL, Russo LA, Peterson CJ, McDermott PJ, Watson PA. Biochemical mechanisms of cardiac hypertrophy. Annu Rev Physiol. 1987;49:533–543. [PubMed] [Google Scholar]
  • Nagai R, Low RB, Stirewalt WS, Alpert NR, Litten RZ. Efficiency and capacity of protein synthesis are increased in pressure overload cardiac hypertrophy. Am J Physiol. 1988 Aug;255(2 Pt 2):H325–H328. [PubMed] [Google Scholar]
  • Izumo S, Nadal-Ginard B, Mahdavi V. Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proc Natl Acad Sci U S A. 1988 Jan;85(2):339–343. [PMC free article] [PubMed] [Google Scholar]
  • Komuro I, Kurabayashi M, Takaku F, Yazaki Y. Expression of cellular oncogenes in the myocardium during the developmental stage and pressure-overloaded hypertrophy of the rat heart. Circ Res. 1988 Jun;62(6):1075–1079. [PubMed] [Google Scholar]
  • Mulvagh SL, Michael LH, Perryman MB, Roberts R, Schneider MD. A hemodynamic load in vivo induces cardiac expression of the cellular oncogene, c-myc. Biochem Biophys Res Commun. 1987 Sep 15;147(2):627–636. [PubMed] [Google Scholar]
  • Simpson PC. Role of proto-oncogenes in myocardial hypertrophy. Am J Cardiol. 1988 Oct 5;62(11):13G–19G. [PubMed] [Google Scholar]
  • Hjalmarson A, Isaksson O. In vitro work load and rat heart metabolism. I. Effect on protein synthesis. Acta Physiol Scand. 1972 Sep;86(1):126–144. [PubMed] [Google Scholar]
  • Kira Y, Kochel PJ, Gordon EE, Morgan HE. Aortic perfusion pressure as a determinant of cardiac protein synthesis. Am J Physiol. 1984 Mar;246(3 Pt 1):C247–C258. [PubMed] [Google Scholar]
  • Peterson MB, Lesch M. Protein synthesis and amino acid transport in the isolated rabbit right ventricular papillary muscle. Effect of isometric tension development. Circ Res. 1972 Sep;31(3):317–327. [PubMed] [Google Scholar]
  • Schreiber SS, Rothschild MA, Evans C, Reff F, Oratz M. The effect of pressure or flow stress on right ventricular protein synthesis in the face of constant and restricted coronary perfusion. J Clin Invest. 1975 Jan;55(1):1–11. [PMC free article] [PubMed] [Google Scholar]
  • Smith DM, Sugden PH. Stimulation of left-atrial protein-synthesis rates by increased left-atrial filling pressures in the perfused working rat heart in vitro. Biochem J. 1983 Dec 15;216(3):537–542. [PMC free article] [PubMed] [Google Scholar]
  • Xenophontos XP, Gordon EE, Morgan HE. Effect of intraventricular pressure on protein synthesis in arrested rat hearts. Am J Physiol. 1986 Jul;251(1 Pt 1):C95–C98. [PubMed] [Google Scholar]
  • Morgan HE, Chua BH, Fuller EO, Siehl D. Regulation of protein synthesis and degradation during in vitro cardiac work. Am J Physiol. 1980 May;238(5):E431–E442. [PubMed] [Google Scholar]
  • Chua BH, Russo LA, Gordon EE, Kleinhans BJ, Morgan HE. Faster ribosome synthesis induced by elevated aortic pressure in rat heart. Am J Physiol. 1987 Mar;252(3 Pt 1):C323–C327. [PubMed] [Google Scholar]
  • Watson PA, Haneda T, Morgan HE. Effect of higher aortic pressure on ribosome formation and cAMP content in rat heart. Am J Physiol. 1989 Jun;256(6 Pt 1):C1257–C1261. [PubMed] [Google Scholar]
  • Peterson CJ, Whitman V, Watson PA, Schuler HG, Morgan HE. Mechanisms of differential growth of heart ventricles in newborn pigs. Circ Res. 1989 Feb;64(2):360–369. [PubMed] [Google Scholar]
  • Camacho JA, Peterson CJ, White GJ, Morgan HE. Accelerated ribosome formation and growth in neonatal pig hearts. Am J Physiol. 1990 Jan;258(1 Pt 1):C86–C91. [PubMed] [Google Scholar]
  • Marino TA, Kuseryk L, Lauva IK. Role of contraction in the structure and growth of neonatal rat cardiocytes. Am J Physiol. 1987 Dec;253(6 Pt 2):H1391–H1399. [PubMed] [Google Scholar]
  • Cooper G, 4th, Mercer WE, Hoober JK, Gordon PR, Kent RL, Lauva IK, Marino TA. Load regulation of the properties of adult feline cardiocytes. The role of substrate adhesion. Circ Res. 1986 May;58(5):692–705. [PubMed] [Google Scholar]
  • McDermott P, Daood M, Klein I. Contraction regulates myosin synthesis and myosin content of cultured heart cells. Am J Physiol. 1985 Oct;249(4 Pt 2):H763–H769. [PubMed] [Google Scholar]
  • McDermott PJ, Rothblum LI, Smith SD, Morgan HE. Accelerated rates of ribosomal RNA synthesis during growth of contracting heart cells in culture. J Biol Chem. 1989 Oct 25;264(30):18220–18227. [PubMed] [Google Scholar]
  • Everett AW, Sinha AM, Umeda PK, Jakovcic S, Rabinowitz M, Zak R. Regulation of myosin synthesis by thyroid hormone: relative change in the alpha- and beta-myosin heavy chain mRNA levels in rabbit heart. Biochemistry. 1984 Apr 10;23(8):1596–1599. [PubMed] [Google Scholar]
  • Klein I. Thyroxine-induced cardiac hypertrophy: time course of development and inhibition by propranolol. Endocrinology. 1988 Jul;123(1):203–210. [PubMed] [Google Scholar]
  • Klein I, Hong C. Effects of thyroid hormone on cardiac size and myosin content of the heterotopically transplanted rat heart. J Clin Invest. 1986 May;77(5):1694–1698. [PMC free article] [PubMed] [Google Scholar]
  • Korecky B, Zak R, Schwartz K, Aschenbrenner V. Role of thyroid hormone in regulation of isomyosin composition, contractility, and size of heterotopically isotransplanted rat heart. Circ Res. 1987 Jun;60(6):824–830. [PubMed] [Google Scholar]
  • Parmacek MS, Magid NM, Lesch M, Decker RS, Samarel AM. Cardiac protein synthesis and degradation during thyroxine-induced left ventricular hypertrophy. Am J Physiol. 1986 Nov;251(5 Pt 1):C727–C736. [PubMed] [Google Scholar]
  • Zähringer J, Klaubert A. The effect of triiodothyronine on the cardiac mRNA. J Mol Cell Cardiol. 1982 Oct;14(10):559–571. [PubMed] [Google Scholar]
  • Palmer RM, Reeds PJ, Atkinson T, Smith RH. The influence of changes in tension on protein synthesis and prostaglandin release in isolated rabbit muscles. Biochem J. 1983 Sep 15;214(3):1011–1014. [PMC free article] [PubMed] [Google Scholar]
  • Vandenburgh HH, Hatfaludy S, Sohar I, Shansky J. Stretch-induced prostaglandins and protein turnover in cultured skeletal muscle. Am J Physiol. 1990 Aug;259(2 Pt 1):C232–C240. [PubMed] [Google Scholar]
  • Kent RL, Hoober JK, Cooper G., 4th Load responsiveness of protein synthesis in adult mammalian myocardium: role of cardiac deformation linked to sodium influx. Circ Res. 1989 Jan;64(1):74–85. [PubMed] [Google Scholar]
  • McMillan DN, Reeds PJ, Lobley GE, Palmer RM. Changes in protein turnover in hypertrophying plantaris muscles of rats: effect of fenbufen--an inhibitor of prostaglandin synthesis. Prostaglandins. 1987 Dec;34(6):841–852. [PubMed] [Google Scholar]
  • Grigg P. Biophysical studies of mechanoreceptors. J Appl Physiol (1985) 1986 Apr;60(4):1107–1115. [PubMed] [Google Scholar]
  • Guharay F, Sachs F. Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J Physiol. 1984 Jul;352:685–701. [PMC free article] [PubMed] [Google Scholar]
  • Craelius W, Chen V, el-Sherif N. Stretch activated ion channels in ventricular myocytes. Biosci Rep. 1988 Oct;8(5):407–414. [PubMed] [Google Scholar]
  • von Harsdorf R, Lang RE, Fullerton M, Woodcock EA. Myocardial stretch stimulates phosphatidylinositol turnover. Circ Res. 1989 Aug;65(2):494–501. [PubMed] [Google Scholar]
  • Moolenaar WH. Effects of growth factors on intracellular pH regulation. Annu Rev Physiol. 1986;48:363–376. [PubMed] [Google Scholar]
  • Madshus IH. Regulation of intracellular pH in eukaryotic cells. Biochem J. 1988 Feb 15;250(1):1–8. [PMC free article] [PubMed] [Google Scholar]
  • Fuller SJ, Gaitanaki CJ, Sugden PH. Effects of increasing extracellular pH on protein synthesis and protein degradation in the perfused working rat heart. Biochem J. 1989 Apr 1;259(1):173–179. [PMC free article] [PubMed] [Google Scholar]
  • Gaitanaki CJ, Sugden PH, Fuller SJ. Stimulation of protein synthesis by raised extracellular pH in cardiac myocytes and perfused hearts. FEBS Lett. 1990 Jan 15;260(1):42–44. [PubMed] [Google Scholar]
  • Bittl JA, Ingwall JS. Reaction rates of creatine kinase and ATP synthesis in the isolated rat heart. A 31P NMR magnetization transfer study. J Biol Chem. 1985 Mar 25;260(6):3512–3517. [PubMed] [Google Scholar]
  • Lawson JW, Veech RL. Effects of pH and free Mg2+ on the Keq of the creatine kinase reaction and other phosphate hydrolyses and phosphate transfer reactions. J Biol Chem. 1979 Jul 25;254(14):6528–6537. [PubMed] [Google Scholar]
  • Preedy VR, Sugden PH. The effects of fasting or hypoxia on rates of protein synthesis in vivo in subcellular fractions of rat heart and gastrocnemius muscle. Biochem J. 1989 Jan 15;257(2):519–527. [PMC free article] [PubMed] [Google Scholar]
  • Preedy VR, Smith DM, Sugden PH. The effects of 6 hours of hypoxia on protein synthesis in rat tissues in vivo and in vitro. Biochem J. 1985 May 15;228(1):179–185. [PMC free article] [PubMed] [Google Scholar]
  • MacLennan PA, Rennie MJ. Effects of ischaemia, blood loss and reperfusion on rat muscle protein synthesis, metabolite concentrations and polyribosome profiles in vivo. Biochem J. 1989 May 15;260(1):195–200. [PMC free article] [PubMed] [Google Scholar]
  • Davies KJ, Goldberg AL. Oxygen radicals stimulate intracellular proteolysis and lipid peroxidation by independent mechanisms in erythrocytes. J Biol Chem. 1987 Jun 15;262(17):8220–8226. [PubMed] [Google Scholar]
  • Davies KJ, Goldberg AL. Proteins damaged by oxygen radicals are rapidly degraded in extracts of red blood cells. J Biol Chem. 1987 Jun 15;262(17):8227–8234. [PubMed] [Google Scholar]
  • Kelly FJ. Effect of hyperoxic exposure on protein synthesis in the rat. Biochem J. 1988 Jan 15;249(2):609–612. [PMC free article] [PubMed] [Google Scholar]
  • Hedden MP, Buse MG. Effects of glucose, pyruvate, lactate, and amino acids on muscle protein synthesis. Am J Physiol. 1982 Mar;242(3):E184–E192. [PubMed] [Google Scholar]
  • Tischler ME. Is regulation of proteolysis associated with redox-state changes in rat skeletal muscle? Biochem J. 1980 Dec 15;192(3):963–966. [PMC free article] [PubMed] [Google Scholar]
  • Tischler ME, Fagan JM. Relationship of the reduction-oxidation state to protein degradation in skeletal and atrial muscle. Arch Biochem Biophys. 1982 Aug;217(1):191–201. [PubMed] [Google Scholar]
  • Chua BH, Kleinhans BJ. Effect of redox potential on protein degradation in perfused rat heart. Am J Physiol. 1985 Jun;248(6 Pt 1):E726–E731. [PubMed] [Google Scholar]
  • Fagan JM, Goldberg AL. The rate of protein degradation in isolated skeletal muscle does not correlate with reduction-oxidation status. Biochem J. 1985 May 1;227(3):689–694. [PMC free article] [PubMed] [Google Scholar]
  • Rennie MJ, Harrison R. Effects of injury, disease, and malnutrition on protein metabolism in man. Unanswered questions. Lancet. 1984 Feb 11;1(8372):323–325. [PubMed] [Google Scholar]
  • Wernerman J, Vinnars E. The effect of trauma and surgery on interorgan fluxes of amino acids in man. Clin Sci (Lond) 1987 Aug;73(2):129–133. [PubMed] [Google Scholar]
  • Wolfe RR, Jahoor F, Hartl WH. Protein and amino acid metabolism after injury. Diabetes Metab Rev. 1989 Mar;5(2):149–164. [PubMed] [Google Scholar]
  • Ash SA, Griffin GE. Effect of parenteral nutrition on protein turnover in endotoxaemic rats. Clin Sci (Lond) 1989 Jun;76(6):659–666. [PubMed] [Google Scholar]
  • Fern EB, McNurlan MA, Garlick PJ. Effect of malaria on rate of protein synthesis in individual tissues of rats. Am J Physiol. 1985 Nov;249(5 Pt 1):E485–E493. [PubMed] [Google Scholar]
  • Lopes MN, Black P, Ashford AJ, Pain VM. Protein metabolism in the tumour-bearing mouse. Rates of protein synthesis in host tissues and in an Ehrlich ascites tumour at different stages in tumour growth. Biochem J. 1989 Dec 15;264(3):713–719. [PMC free article] [PubMed] [Google Scholar]
  • Emery PW, Edwards RH, Rennie MJ, Souhami RL, Halliday D. Protein synthesis in muscle measured in vivo in cachectic patients with cancer. Br Med J (Clin Res Ed) 1984 Sep 8;289(6445):584–586. [PMC free article] [PubMed] [Google Scholar]
  • Emery PW, Lovell L, Rennie MJ. Protein synthesis measured in vivo in muscle and liver of cachectic tumor-bearing mice. Cancer Res. 1984 Jul;44(7):2779–2784. [PubMed] [Google Scholar]
  • Strelkov AB, Fields AL, Baracos VE. Effects of systemic inhibition of prostaglandin production on protein metabolism in tumor-bearing rats. Am J Physiol. 1989 Aug;257(2 Pt 1):C261–C269. [PubMed] [Google Scholar]
  • Frayn KN. Hormonal control of metabolism in trauma and sepsis. Clin Endocrinol (Oxf) 1986 May;24(5):577–599. [PubMed] [Google Scholar]
  • McKinley CJ, Turinsky J. Prostaglandin E2 and muscle proteolysis: effect of burn injury and cycloheximide. Am J Physiol. 1986 Feb;250(2 Pt 2):R207–R210. [PubMed] [Google Scholar]
  • Odessey R, Parr B. Effect of insulin and leucine on protein turnover in rat soleus muscle after burn injury. Metabolism. 1982 Jan;31(1):82–87. [PubMed] [Google Scholar]
  • Shangraw RE, Turinsky J. Altered protein kinetics in vivo after single-limb burn injury. Biochem J. 1984 Nov 1;223(3):747–753. [PMC free article] [PubMed] [Google Scholar]
  • Jepson MM, Cox M, Bates PC, Rothwell NJ, Stock MJ, Cady EB, Millward DJ. Regional blood flow and skeletal muscle energy status in endotoxemic rats. Am J Physiol. 1987 May;252(5 Pt 1):E581–E587. [PubMed] [Google Scholar]
  • Goldberg AL, Baracos V, Rodemann P, Waxman L, Dinarello C. Control of protein degradation in muscle by prostaglandins, Ca2+, and leukocytic pyrogen (interleukin 1). Fed Proc. 1984 Apr;43(5):1301–1306. [PubMed] [Google Scholar]
  • Hasselgren PO, Talamini M, LaFrance R, James JH, Peters JC, Fischer JE. Effect of indomethacin on proteolysis in septic muscle. Ann Surg. 1985 Nov;202(5):557–562. [PMC free article] [PubMed] [Google Scholar]
  • Hasselgren PO, Warner BW, Hummel RP, 3rd, James JH, Ogle CK, Fischer JE. Further evidence that accelerated muscle protein breakdown during sepsis is not mediated by prostaglandin E2. Ann Surg. 1988 Apr;207(4):399–403. [PMC free article] [PubMed] [Google Scholar]
  • Hummel RP, 3rd, Warner BW, James JH, Hasselgren PO, Fischer JE. Effects of indomethacin and leupeptin on muscle cathepsin B activity and protein degradation during sepsis. J Surg Res. 1988 Jul;45(1):140–144. [PubMed] [Google Scholar]
  • Ruff RL, Secrist D. Inhibitors of prostaglandin synthesis or cathepsin B prevent muscle wasting due to sepsis in the rat. J Clin Invest. 1984 May;73(5):1483–1486. [PMC free article] [PubMed] [Google Scholar]
  • Tian S, Baracos VE. Prostaglandin-dependent muscle wasting during infection in the broiler chick (Gallus domesticus) and the laboratory rat (Rattus norvegicus). Biochem J. 1989 Oct 15;263(2):485–490. [PMC free article] [PubMed] [Google Scholar]
  • Baracos VE, Wilson EJ, Goldberg AL. Effects of temperature on protein turnover in isolated rat skeletal muscle. Am J Physiol. 1984 Jan;246(1 Pt 1):C125–C130. [PubMed] [Google Scholar]
  • Clowes GH, Jr, George BC, Villee CA, Jr, Saravis CA. Muscle proteolysis induced by a circulating peptide in patients with sepsis or trauma. N Engl J Med. 1983 Mar 10;308(10):545–552. [PubMed] [Google Scholar]
  • Goldberg AL, Kettelhut IC, Furuno K, Fagan JM, Baracos V. Activation of protein breakdown and prostaglandin E2 production in rat skeletal muscle in fever is signaled by a macrophage product distinct from interleukin 1 or other known monokines. J Clin Invest. 1988 May;81(5):1378–1383. [PMC free article] [PubMed] [Google Scholar]
  • Baracos V, Rodemann HP, Dinarello CA, Goldberg AL. Stimulation of muscle protein degradation and prostaglandin E2 release by leukocytic pyrogen (interleukin-1). A mechanism for the increased degradation of muscle proteins during fever. N Engl J Med. 1983 Mar 10;308(10):553–558. [PubMed] [Google Scholar]
  • Moldawer LL, Svaninger G, Gelin J, Lundholm KG. Interleukin 1 and tumor necrosis factor do not regulate protein balance in skeletal muscle. Am J Physiol. 1987 Dec;253(6 Pt 1):C766–C773. [PubMed] [Google Scholar]
  • Charters Y, Grimble RF. Effect of recombinant human tumour necrosis factor alpha on protein synthesis in liver, skeletal muscle and skin of rats. Biochem J. 1989 Mar 1;258(2):493–497. [PMC free article] [PubMed] [Google Scholar]
  • Oliff A, Defeo-Jones D, Boyer M, Martinez D, Kiefer D, Vuocolo G, Wolfe A, Socher SH. Tumors secreting human TNF/cachectin induce cachexia in mice. Cell. 1987 Aug 14;50(4):555–563. [PubMed] [Google Scholar]
  • Oliff A. The role of tumor necrosis factor (cachectin) in cachexia. Cell. 1988 Jul 15;54(2):141–142. [PubMed] [Google Scholar]
  • Kettelhut IC, Goldberg AL. Tumor necrosis factor can induce fever in rats without activating protein breakdown in muscle or lipolysis in adipose tissue. J Clin Invest. 1988 May;81(5):1384–1389. [PMC free article] [PubMed] [Google Scholar]
  • Beynon RJ, Bond JS. Catabolism of intracellular protein: molecular aspects. Am J Physiol. 1986 Aug;251(2 Pt 1):C141–C152. [PubMed] [Google Scholar]
  • Bond JS, Butler PE. Intracellular proteases. Annu Rev Biochem. 1987;56:333–364. [PubMed] [Google Scholar]
  • Rivett AJ. The multicatalytic proteinase of mammalian cells. Arch Biochem Biophys. 1989 Jan;268(1):1–8. [PubMed] [Google Scholar]
  • Rivett AJ. High molecular mass intracellular proteases. Biochem J. 1989 Nov 1;263(3):625–633. [PMC free article] [PubMed] [Google Scholar]
  • Hershko A. Ubiquitin-mediated protein degradation. J Biol Chem. 1988 Oct 25;263(30):15237–15240. [PubMed] [Google Scholar]
  • Murachi T. Intracellular regulatory system involving calpain and calpastatin. Biochem Int. 1989 Feb;18(2):263–294. [PubMed] [Google Scholar]
  • Chiang HL, Dice JF. Peptide sequences that target proteins for enhanced degradation during serum withdrawal. J Biol Chem. 1988 May 15;263(14):6797–6805. [PubMed] [Google Scholar]
  • Chiang HL, Terlecky SR, Plant CP, Dice JF. A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science. 1989 Oct 20;246(4928):382–385. [PubMed] [Google Scholar]
  • Maltin CA, Delday MI, Baillie AG, Grubb DA, Garlick PJ. Fiber-type composition of nine rat muscles. I. Changes during the first year of life. Am J Physiol. 1989 Dec;257(6 Pt 1):E823–E827. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

-