Skip to main content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Biochem J. 1999 May 1; 339(Pt 3): 563–569.
PMCID: PMC1220191
PMID: 10215594

Identification of an oxygen-responsive element in the 5'-flanking sequence of the rat cytosolic phosphoenolpyruvate carboxykinase-1 gene, modulating its glucagon-dependent activation.

Abstract

The glucagon-stimulated transcription of the cytosolic phosphoenolpyruvate carboxykinase-1 (PCK1) gene is mediated by cAMP and positively modulated by oxygen in primary hepatocytes. Rat hepatocytes were transfected with constructs containing the first 2500, 493 or 281 bp of the PCK1 5'-flanking region in front of the chloramphenicol acetyltransferase (CAT) reporter gene. With all three constructs glucagon induced CAT activity with decreasing efficiency maximally under arterial pO2 and to about 65% under venous pO2. Rat hepatocytes were then transfected with constructs containing the first 493 bp of the PCK1 5'-flanking region in front of the luciferase (LUC) reporter gene, which were block-mutated at the CRE1 (cAMP-response element-1; -93/-86), putative CRE2 (-146/-139), promoter element (P) 1 (-118/-104), P2 (-193/-181) or P4 (-291/-273) sites. Glucagon induced LUC activity strongly when the P1 and P2 sites were mutated and weakly when the P4 site was mutated; induction of the P1, P2 and P4 mutants was positively modulated by the pO2. Glucagon also induced LUC activity strongly when the putative CRE2 site was altered; however, induction of the CRE2 mutant was not modulated by the pO2. Glucagon did not induce LUC activity when the CRE1 site was modified. These experiments suggested that the CRE1 but not the putative CRE2 was an essential site necessary for the cAMP-mediated PCK1 gene activation by glucagon and that the putative CRE2 site was involved in the oxygen-dependent modulation of PCK1 gene activation. To confirm these conclusions rat hepatocytes were transfected with simian virus 40 (SV40)-promoter-driven LUC-gene constructs containing three CRE1 sequences (-95/-84), three CRE2 sequences (-148/-137) or three CRE1 sequences plus two CRE2 sequences of the PCK1 gene in front of the SV40 promoter. Glucagon induced LUC activity markedly when the CRE1, but not when the CRE2, sites were in front of the SV40-LUC gene; however, induction of the (CRE1)3SV40-LUC constructs was not modulated by the pO2. Glucagon also induced LUC activity very strongly when the CRE1 and CRE2 sites were combined; induction of the (CRE1)3(CRE2)2SV40-LUC constructs was positively modulated by the pO2. These findings corroborated that sequences of the putative CRE2 site were responsible for the modulation by oxygen of the CRE1-dependent induction by glucagon of PCK1 gene transcription.

Full Text

The Full Text of this article is available as a PDF (144K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  • UTTER MF, KURAHASHI K. Purification of oxalacetic carboxylase from chicken liver. J Biol Chem. 1954 Apr;207(2):787–802. [PubMed] [Google Scholar]
  • NORDLIE RC, LARDY HA. Mammalian liver phosphoneolpyruvate carboxykinase activities. J Biol Chem. 1963 Jul;238:2259–2263. [PubMed] [Google Scholar]
  • Beale EG, Chrapkiewicz NB, Scoble HA, Metz RJ, Quick DP, Noble RL, Donelson JE, Biemann K, Granner DK. Rat hepatic cytosolic phosphoenolpyruvate carboxykinase (GTP). Structures of the protein, messenger RNA, and gene. J Biol Chem. 1985 Sep 5;260(19):10748–10760. [PubMed] [Google Scholar]
  • Ting CN, Burgess DL, Chamberlain JS, Keith TP, Falls K, Meisler MH. Phosphoenolpyruvate carboxykinase (GTP): characterization of the human PCK1 gene and localization distal to MODY on chromosome 20. Genomics. 1993 Jun;16(3):698–706. [PubMed] [Google Scholar]
  • Modaressi S, Brechtel K, Christ B, Jungermann K. Human mitochondrial phosphoenolpyruvate carboxykinase 2 gene. Structure, chromosomal localization and tissue-specific expression. Biochem J. 1998 Jul 15;333(Pt 2):359–366. [PMC free article] [PubMed] [Google Scholar]
  • McGrane MM, Yun JS, Moorman AF, Lamers WH, Hendrick GK, Arafah BM, Park EA, Wagner TE, Hanson RW. Metabolic effects of developmental, tissue-, and cell-specific expression of a chimeric phosphoenolpyruvate carboxykinase (GTP)/bovine growth hormone gene in transgenic mice. J Biol Chem. 1990 Dec 25;265(36):22371–22379. [PubMed] [Google Scholar]
  • Beale EG, Clouthier DE, Hammer RE. Cell-specific expression of cytosolic phosphoenolpyruvate carboxykinase in transgenic mice. FASEB J. 1992 Dec;6(15):3330–3337. [PubMed] [Google Scholar]
  • Pilkis SJ, Granner DK. Molecular physiology of the regulation of hepatic gluconeogenesis and glycolysis. Annu Rev Physiol. 1992;54:885–909. [PubMed] [Google Scholar]
  • Short JM, Wynshaw-Boris A, Short HP, Hanson RW. Characterization of the phosphoenolpyruvate carboxykinase (GTP) promoter-regulatory region. II. Identification of cAMP and glucocorticoid regulatory domains. J Biol Chem. 1986 Jul 25;261(21):9721–9726. [PubMed] [Google Scholar]
  • Wynshaw-Boris A, Short JM, Loose DS, Hanson RW. Characterization of the phosphoenolpyruvate carboxykinase (GTP) promoter-regulatory region. I. Multiple hormone regulatory elements and the effects of enhancers. J Biol Chem. 1986 Jul 25;261(21):9714–9720. [PubMed] [Google Scholar]
  • Runge D, Schmidt H, Christ B, Jungermann K. Mechanism of the permissive action of dexamethasone on the glucagon-dependent activation of the phosphoenolpyruvate carboxykinase gene in cultured rat hepatocytes. Eur J Biochem. 1991 Jun 15;198(3):641–649. [PubMed] [Google Scholar]
  • O'Brien RM, Lucas PC, Forest CD, Magnuson MA, Granner DK. Identification of a sequence in the PEPCK gene that mediates a negative effect of insulin on transcription. Science. 1990 Aug 3;249(4968):533–537. [PubMed] [Google Scholar]
  • Christ B, Nath A, Jungermann K. Mechanism of the inhibition by insulin of the glucagon-dependent activation of the phosphoenolpyruvate carboxykinase gene in rat hepatocyte cultures. Action on gene transcription, mRNA level and -stability as well as hysteresis effect. Biol Chem Hoppe Seyler. 1990 May;371(5):395–402. [PubMed] [Google Scholar]
  • Watford M, Mapes RE. Hormonal and acid-base regulation of phosphoenolpyruvate carboxykinase mRNA levels in rat kidney. Arch Biochem Biophys. 1990 Nov 1;282(2):399–403. [PubMed] [Google Scholar]
  • Hwang JJ, Curthoys NP. Effect of acute alterations in acid-base balance on rat renal glutaminase and phosphoenolpyruvate carboxykinase gene expression. J Biol Chem. 1991 May 25;266(15):9392–9396. [PubMed] [Google Scholar]
  • Kaiser S, Curthoys NP. Effect of pH and bicarbonate on phosphoenolpyruvate carboxykinase and glutaminase mRNA levels in cultured renal epithelial cells. J Biol Chem. 1991 May 25;266(15):9397–9402. [PubMed] [Google Scholar]
  • Jungermann K, Katz N. Functional specialization of different hepatocyte populations. Physiol Rev. 1989 Jul;69(3):708–764. [PubMed] [Google Scholar]
  • Gebhardt R. Metabolic zonation of the liver: regulation and implications for liver function. Pharmacol Ther. 1992;53(3):275–354. [PubMed] [Google Scholar]
  • Jungermann K, Kietzmann T. Zonation of parenchymal and nonparenchymal metabolism in liver. Annu Rev Nutr. 1996;16:179–203. [PubMed] [Google Scholar]
  • Nauck M, Wölfle D, Katz N, Jungermann K. Modulation of the glucagon-dependent induction of phosphoenolpyruvate carboxykinase and tyrosine aminotransferase by arterial and venous oxygen concentrations in hepatocyte cultures. Eur J Biochem. 1981 Oct;119(3):657–661. [PubMed] [Google Scholar]
  • Hellkamp J, Christ B, Bastian H, Jungermann K. Modulation by oxygen of the glucagon-dependent activation of the phosphoenolpyruvate carboxykinase gene in rat hepatocyte cultures. Eur J Biochem. 1991 Jun 15;198(3):635–639. [PubMed] [Google Scholar]
  • Kietzmann T, Freimann S, Bratke J, Jungermann K. Regulation of the gluconeogenic phosphoenolpyruvate carboxykinase and glycolytic aldolase A gene expression by O2 in rat hepatocyte cultures. Involvement of hydrogen peroxide as mediator in the response to O2. FEBS Lett. 1996 Jun 17;388(2-3):228–232. [PubMed] [Google Scholar]
  • Kietzmann T, Roth U, Freimann S, Jungermann K. Arterial oxygen partial pressures reduce the insulin-dependent induction of the perivenously located glucokinase in rat hepatocyte cultures: mimicry of arterial oxygen pressures by H2O2. Biochem J. 1997 Jan 1;321(Pt 1):17–20. [PMC free article] [PubMed] [Google Scholar]
  • Roesler WJ, Vandenbark GR, Hanson RW. Identification of multiple protein binding domains in the promoter-regulatory region of the phosphoenolpyruvate carboxykinase (GTP) gene. J Biol Chem. 1989 Jun 5;264(16):9657–9664. [PubMed] [Google Scholar]
  • Park EA, Roesler WJ, Liu J, Klemm DJ, Gurney AL, Thatcher JD, Shuman J, Friedman A, Hanson RW. The role of the CCAAT/enhancer-binding protein in the transcriptional regulation of the gene for phosphoenolpyruvate carboxykinase (GTP). Mol Cell Biol. 1990 Dec;10(12):6264–6272. [PMC free article] [PubMed] [Google Scholar]
  • Seubert W, Huth W. On the mechanism of gluconeogenesis and its regulation. II. The mechanism of gluconeogenesis from pyruvate and fumarate. Biochem Z. 1965 Nov 15;343(2):176–191. [PubMed] [Google Scholar]
  • Modaressi S, Christ B, Bratke J, Zahn S, Heise T, Jungermann K. Molecular cloning, sequencing and expression of the cDNA of the mitochondrial form of phosphoenolpyruvate carboxykinase from human liver. Biochem J. 1996 May 1;315(Pt 3):807–814. [PMC free article] [PubMed] [Google Scholar]
  • Gorman CM, Moffat LF, Howard BH. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol. 1982 Sep;2(9):1044–1051. [PMC free article] [PubMed] [Google Scholar]
  • Immenschuh S, Hinke V, Ohlmann A, Gifhorn-Katz S, Katz N, Jungermann K, Kietzmann T. Transcriptional activation of the haem oxygenase-1 gene by cGMP via a cAMP response element/activator protein-1 element in primary cultures of rat hepatocytes. Biochem J. 1998 Aug 15;334(Pt 1):141–146. [PMC free article] [PubMed] [Google Scholar]
  • Imai E, Stromstedt PE, Quinn PG, Carlstedt-Duke J, Gustafsson JA, Granner DK. Characterization of a complex glucocorticoid response unit in the phosphoenolpyruvate carboxykinase gene. Mol Cell Biol. 1990 Sep;10(9):4712–4719. [PMC free article] [PubMed] [Google Scholar]
  • Bunn HF, Poyton RO. Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev. 1996 Jul;76(3):839–885. [PubMed] [Google Scholar]
  • Imagawa S, Goldberg MA, Doweiko J, Bunn HF. Regulatory elements of the erythropoietin gene. Blood. 1991 Jan 15;77(2):278–285. [PubMed] [Google Scholar]
  • Semenza GL, Nejfelt MK, Chi SM, Antonarakis SE. Hypoxia-inducible nuclear factors bind to an enhancer element located 3' to the human erythropoietin gene. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5680–5684. [PMC free article] [PubMed] [Google Scholar]
  • Eckardt KU, Pugh CW, Meier M, Tan CC, Ratcliffe PJ, Kurtz A. Production of erythropoietin by liver cells in vivo and in vitro. Ann N Y Acad Sci. 1994 Apr 15;718:50–63. [PubMed] [Google Scholar]
  • Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 1992 Oct 29;359(6398):843–845. [PubMed] [Google Scholar]
  • Goldberg MA, Schneider TJ. Similarities between the oxygen-sensing mechanisms regulating the expression of vascular endothelial growth factor and erythropoietin. J Biol Chem. 1994 Feb 11;269(6):4355–4359. [PubMed] [Google Scholar]
  • Kourembanas S, Hannan RL, Faller DV. Oxygen tension regulates the expression of the platelet-derived growth factor-B chain gene in human endothelial cells. J Clin Invest. 1990 Aug;86(2):670–674. [PMC free article] [PubMed] [Google Scholar]
  • Kourembanas S, Marsden PA, McQuillan LP, Faller DV. Hypoxia induces endothelin gene expression and secretion in cultured human endothelium. J Clin Invest. 1991 Sep;88(3):1054–1057. [PMC free article] [PubMed] [Google Scholar]
  • King SJ, Booyse FM, Lin PH, Traylor M, Narkates AJ, Oparil S. Hypoxia stimulates endothelial cell angiotensin-converting enzyme antigen synthesis. Am J Physiol. 1989 Jun;256(6 Pt 1):C1231–C1238. [PubMed] [Google Scholar]
  • Czyzyk-Krzeska MF, Furnari BA, Lawson EE, Millhorn DE. Hypoxia increases rate of transcription and stability of tyrosine hydroxylase mRNA in pheochromocytoma (PC12) cells. J Biol Chem. 1994 Jan 7;269(1):760–764. [PubMed] [Google Scholar]
  • Firth JD, Ebert BL, Pugh CW, Ratcliffe PJ. Oxygen-regulated control elements in the phosphoglycerate kinase 1 and lactate dehydrogenase A genes: similarities with the erythropoietin 3' enhancer. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6496–6500. [PMC free article] [PubMed] [Google Scholar]
  • Semenza GL, Roth PH, Fang HM, Wang GL. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem. 1994 Sep 23;269(38):23757–23763. [PubMed] [Google Scholar]
  • Okamoto T, Mitsuhashi M, Fujita I, Sindhu RK, Kikkawa Y. Induction of cytochrome P450 1A1 and 1A2 by hyperoxia. Biochem Biophys Res Commun. 1993 Dec 15;197(2):878–885. [PubMed] [Google Scholar]
  • Cowan DB, Weisel RD, Williams WG, Mickle DA. Identification of oxygen responsive elements in the 5'-flanking region of the human glutathione peroxidase gene. J Biol Chem. 1993 Dec 25;268(36):26904–26910. [PubMed] [Google Scholar]
  • Acarregui MJ, Snyder JM, Mendelson CR. Oxygen modulates the differentiation of human fetal lung in vitro and its responsiveness to cAMP. Am J Physiol. 1993 May;264(5 Pt 1):L465–L474. [PubMed] [Google Scholar]
  • Christ B, Nath A, Jungermann K. Interactions of nuclear protein from cultured rat hepatocytes with the cyclic AMP responsive elements and the NF1-CTF site in the promoter of the rat phosphoenolpyruvate carboxykinase gene. Biochem Biophys Res Commun. 1991 Nov 27;181(1):367–374. [PubMed] [Google Scholar]
  • Pahl HL, Baeuerle PA. Oxygen and the control of gene expression. Bioessays. 1994 Jul;16(7):497–502. [PubMed] [Google Scholar]
  • Fandrey J, Frede S, Jelkmann W. Role of hydrogen peroxide in hypoxia-induced erythropoietin production. Biochem J. 1994 Oct 15;303(Pt 2):507–510. [PMC free article] [PubMed] [Google Scholar]
  • Kietzmann T, Porwol T, Zierold K, Jungermann K, Acker H. Involvement of a local fenton reaction in the reciprocal modulation by O2 of the glucagon-dependent activation of the phosphoenolpyruvate carboxykinase gene and the insulin-dependent activation of the glucokinase gene in rat hepatocytes. Biochem J. 1998 Oct 15;335(Pt 2):425–432. [PMC free article] [PubMed] [Google Scholar]
  • Beck I, Ramirez S, Weinmann R, Caro J. Enhancer element at the 3'-flanking region controls transcriptional response to hypoxia in the human erythropoietin gene. J Biol Chem. 1991 Aug 25;266(24):15563–15566. [PubMed] [Google Scholar]
  • Pugh CW, Tan CC, Jones RW, Ratcliffe PJ. Functional analysis of an oxygen-regulated transcriptional enhancer lying 3' to the mouse erythropoietin gene. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10553–10557. [PMC free article] [PubMed] [Google Scholar]
  • Wenger RH, Gassmann M. Oxygen(es) and the hypoxia-inducible factor-1. Biol Chem. 1997 Jul;378(7):609–616. [PubMed] [Google Scholar]
  • Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol. 1992 Dec;12(12):5447–5454. [PMC free article] [PubMed] [Google Scholar]
  • Maxwell PH, Pugh CW, Ratcliffe PJ. Inducible operation of the erythropoietin 3' enhancer in multiple cell lines: evidence for a widespread oxygen-sensing mechanism. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2423–2427. [PMC free article] [PubMed] [Google Scholar]
  • Wang GL, Semenza GL. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4304–4308. [PMC free article] [PubMed] [Google Scholar]
  • Kietzmann T, Bratke J, Jungermann K. Diminution of the O2 responsiveness of the glucagon-dependent activation of the phosphoenolpyruvate carboxykinase gene in rat hepatocytes by long-term culture at venous PO2. Kidney Int. 1997 Feb;51(2):542–547. [PubMed] [Google Scholar]
  • Webster KA, Discher DJ, Bishopric NH. Induction and nuclear accumulation of fos and jun proto-oncogenes in hypoxic cardiac myocytes. J Biol Chem. 1993 Aug 5;268(22):16852–16858. [PubMed] [Google Scholar]
  • Gurney AL, Park EA, Giralt M, Liu J, Hanson RW. Opposing actions of Fos and Jun on transcription of the phosphoenolpyruvate carboxykinase (GTP) gene. Dominant negative regulation by Fos. J Biol Chem. 1992 Sep 5;267(25):18133–18139. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

-