Skip to main content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Biochem J. 2001 Mar 15; 354(Pt 3): 501–509.
PMCID: PMC1221681
PMID: 11237854

Human ornithine transcarbamylase: crystallographic insights into substrate recognition and conformational changes.

Abstract

Two crystal structures of human ornithine transcarbamylase (OTCase) complexed with the substrate carbamoyl phosphate (CP) have been solved. One structure, whose crystals were prepared by substituting N-phosphonacetyl-L-ornithine (PALO) liganded crystals with CP, has been refined at 2.4 A (1 A=0.1 nm) resolution to a crystallographic R factor of 18.4%. The second structure, whose crystals were prepared by co-crystallization with CP, has been refined at 2.6 A resolution to a crystallographic R factor of 20.2%. These structures provide important new insights into substrate recognition and ligand-induced conformational changes. Comparison of these structures with the structures of OTCase complexed with the bisubstrate analogue PALO or CP and L-norvaline reveals that binding of the first substrate, CP, induces a global conformational change involving relative domain movement, whereas the binding of the second substrate brings the flexible SMG loop, which is equivalent to the 240s loop in aspartate transcarbamylase, into the active site. The model reveals structural features that define the substrate specificity of the enzyme and that regulate the order of binding and release of products.

Full Text

The Full Text of this article is available as a PDF (322K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  • BOJANOWSKI R, GAUDY E, VALENTINE RC, WOLFE RS. OXAMIC TRANSCARBAMYLASE OF STREPTOCOCCUS ALLANTOICUS. J Bacteriol. 1964 Jan;87:75–80. [PMC free article] [PubMed] [Google Scholar]
  • Vander Wauven C, Simon JP, Slos P, Stalon V. Control of enzyme synthesis in the oxalurate catabolic pathway of Streptococcus faecalis ATCC 11700: evidence for the existence of a third carbamate kinase. Arch Microbiol. 1986 Sep;145(4):386–390. [PubMed] [Google Scholar]
  • Wargnies B, Lauwers N, Stalon V. Structure and properties of the putrescine carbamoyltransferase of Streptococcus faecalis. Eur J Biochem. 1979 Nov 1;101(1):143–152. [PubMed] [Google Scholar]
  • Tricot C, De Coen JL, Momin P, Falmagne P, Stalon V. Evolutionary relationships among bacterial carbamoyltransferases. J Gen Microbiol. 1989 Sep;135(9):2453–2464. [PubMed] [Google Scholar]
  • Hommes FA, Eller AG, Scott DF, Carter AL. Separation of ornithine and lysine activities of the ornithine-transcarbamylase-catalyzed reaction. Enzyme. 1983;29(4):271–277. [PubMed] [Google Scholar]
  • Carter AL, Eller AG, Rufo S, Metoki K, Hommes FA. Further evidence for a separate enzymic entity for the synthesis of homocitrulline, distinct from the regular ornithine transcarbamylase. Enzyme. 1984;32(1):26–36. [PubMed] [Google Scholar]
  • Lipscomb WN. Aspartate transcarbamylase from Escherichia coli: activity and regulation. Adv Enzymol Relat Areas Mol Biol. 1994;68:67–151. [PubMed] [Google Scholar]
  • Jin L, Seaton BA, Head JF. Crystal structure at 2.8 A resolution of anabolic ornithine transcarbamylase from Escherichia coli. Nat Struct Biol. 1997 Aug;4(8):622–625. [PubMed] [Google Scholar]
  • Ha Y, McCann MT, Tuchman M, Allewell NM. Substrate-induced conformational change in a trimeric ornithine transcarbamoylase. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9550–9555. [PMC free article] [PubMed] [Google Scholar]
  • Villeret V, Tricot C, Stalon V, Dideberg O. Crystal structure of Pseudomonas aeruginosa catabolic ornithine transcarbamoylase at 3.0-A resolution: a different oligomeric organization in the transcarbamoylase family. Proc Natl Acad Sci U S A. 1995 Nov 7;92(23):10762–10766. [PMC free article] [PubMed] [Google Scholar]
  • Villeret V, Clantin B, Tricot C, Legrain C, Roovers M, Stalon V, Glansdorff N, Van Beeumen J. The crystal structure of Pyrococcus furiosus ornithine carbamoyltransferase reveals a key role for oligomerization in enzyme stability at extremely high temperatures. Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):2801–2806. [PMC free article] [PubMed] [Google Scholar]
  • Shi D, Morizono H, Ha Y, Aoyagi M, Tuchman M, Allewell NM. 1.85-A resolution crystal structure of human ornithine transcarbamoylase complexed with N-phosphonacetyl-L-ornithine. Catalytic mechanism and correlation with inherited deficiency. J Biol Chem. 1998 Dec 18;273(51):34247–34254. [PubMed] [Google Scholar]
  • Shi D, Morizono H, Aoyagi M, Tuchman M, Allewell NM. Crystal structure of human ornithine transcarbamylase complexed with carbamoyl phosphate and L-norvaline at 1.9 A resolution. Proteins. 2000 Jun 1;39(4):271–277. [PubMed] [Google Scholar]
  • Baur H, Stalon V, Falmagne P, Luethi E, Haas D. Primary and quaternary structure of the catabolic ornithine carbamoyltransferase from Pseudomonas aeruginosa. Extensive sequence homology with the anabolic ornithine carbamoyltransferases of Escherichia coli. Eur J Biochem. 1987 Jul 1;166(1):111–117. [PubMed] [Google Scholar]
  • Ke HM, Lipscomb WN, Cho YJ, Honzatko RB. Complex of N-phosphonacetyl-L-aspartate with aspartate carbamoyltransferase. X-ray refinement, analysis of conformational changes and catalytic and allosteric mechanisms. J Mol Biol. 1988 Dec 5;204(3):725–747. [PubMed] [Google Scholar]
  • Miller AW, Kuo LC. Ligand-induced isomerizations of Escherichia coli ornithine transcarbamoylase. An ultraviolet difference analysis. J Biol Chem. 1990 Sep 5;265(25):15023–15027. [PubMed] [Google Scholar]
  • De Gregorio A, Risitano A, Capo C, Criniò C, Petruzzelli R, Desideri A. Evidence of carbamoylphosphate induced conformational changes upon binding to human ornithine carbamoyltransferase. Biochem Mol Biol Int. 1999 Jun;47(6):965–970. [PubMed] [Google Scholar]
  • Knier BL, Allewell NM. Calorimetric analysis of aspartate transcarbamylase from Escherichia coli. Binding of substrates and substrate analogues to the native enzyme and catalytic subunit. Biochemistry. 1978 Mar 7;17(5):784–790. [PubMed] [Google Scholar]
  • Morizono H, Tuchman M, Rajagopal BS, McCann MT, Listrom CD, Yuan X, Venugopal D, Barany G, Allewell NM. Expression, purification and kinetic characterization of wild-type human ornithine transcarbamylase and a recurrent mutant that produces 'late onset' hyperammonaemia. Biochem J. 1997 Mar 1;322(Pt 2):625–631. [PMC free article] [PubMed] [Google Scholar]
  • Jones TA, Zou JY, Cowan SW, Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. [PubMed] [Google Scholar]
  • Jiang JS, Brünger AT. Protein hydration observed by X-ray diffraction. Solvation properties of penicillopepsin and neuraminidase crystal structures. J Mol Biol. 1994 Oct 14;243(1):100–115. [PubMed] [Google Scholar]
  • Brünger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905–921. [PubMed] [Google Scholar]
  • Hutchinson EG, Thornton JM. PROMOTIF--a program to identify and analyze structural motifs in proteins. Protein Sci. 1996 Feb;5(2):212–220. [PMC free article] [PubMed] [Google Scholar]
  • Valentini G, De Gregorio A, Di Salvo C, Grimm R, Bellocco E, Cuzzocrea G, Iadarola P. An essential lysine in the substrate-binding site of ornithine carbamoyltransferase. Eur J Biochem. 1996 Jul 15;239(2):397–402. [PubMed] [Google Scholar]
  • Kuo LC, Caron C, Lee S, Herzberg W. Zn2+ regulation of ornithine transcarbamoylase. II. Metal binding site. J Mol Biol. 1990 Jan 5;211(1):271–280. [PubMed] [Google Scholar]
  • Aoki Y, Sunaga H, Suzuki KT. A cadmium-binding protein in rat liver identified as ornithine carbamoyltransferase. Biochem J. 1988 Mar 15;250(3):735–742. [PMC free article] [PubMed] [Google Scholar]
  • Kuo LC, Seaton BA. X-ray diffraction analysis on single crystals of recombinant Escherichia coli ornithine transcarbamoylase. J Biol Chem. 1989 Sep 25;264(27):16246–16248. [PubMed] [Google Scholar]
  • Legrain C, Stalon V. Ornithine carbamoyltransferase from Escherichia coli W. Purification, structure and steady-state kinetic analysis. Eur J Biochem. 1976 Mar 16;63(1):289–301. [PubMed] [Google Scholar]
  • Goldsmith JO, Kuo LC. Utilization of conformational flexibility in enzyme action-linkage between binding, isomerization, and catalysis. J Biol Chem. 1993 Sep 5;268(25):18481–18484. [PubMed] [Google Scholar]
  • Gouaux JE, Lipscomb WN. Crystal structures of phosphonoacetamide ligated T and phosphonoacetamide and malonate ligated R states of aspartate carbamoyltransferase at 2.8-A resolution and neutral pH. Biochemistry. 1990 Jan 16;29(2):389–402. [PubMed] [Google Scholar]
  • Gouaux JE, Lipscomb WN. Three-dimensional structure of carbamoyl phosphate and succinate bound to aspartate carbamoyltransferase. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4205–4208. [PMC free article] [PubMed] [Google Scholar]
  • Coque JJ, Pérez-Llarena FJ, Enguita FJ, Fuente JL, Martín JF, Liras P. Characterization of the cmcH genes of Nocardia lactamdurans and Streptomyces clavuligerus encoding a functional 3'-hydroxymethylcephem O-carbamoyltransferase for cephamycin biosynthesis. Gene. 1995 Aug 30;162(1):21–27. [PubMed] [Google Scholar]
  • Williamson CL, Lake MR, Slocum RD. Isolation and characterization of a cDNA encoding a pea ornithine transcarbamoylase (argF) and comparison with other transcarbamoylases. Plant Mol Biol. 1996 Sep;31(6):1087–1092. [PubMed] [Google Scholar]
  • Mosqueda G, Van den Broeck G, Saucedo O, Bailey AM, Alvarez-Morales A, Herrera-Estrella L. Isolation and characterization of the gene from Pseudomonas syringae pv. phaseolicola encoding the phaseolotoxin-insensitive ornithine carbamoyltransferase. Mol Gen Genet. 1990 Jul;222(2-3):461–466. [PubMed] [Google Scholar]
  • de Ruiter H, Kollöffel C. Properties of Ornithine Carbamoyltransferase from Pisum sativum L. Plant Physiol. 1985 Mar;77(3):695–699. [PMC free article] [PubMed] [Google Scholar]
  • Robey EA, Wente SR, Markby DW, Flint A, Yang YR, Schachman HK. Effect of amino acid substitutions on the catalytic and regulatory properties of aspartate transcarbamoylase. Proc Natl Acad Sci U S A. 1986 Aug;83(16):5934–5938. [PMC free article] [PubMed] [Google Scholar]
  • Stebbins JW, Xu W, Kantrowitz ER. Three residues involved in binding and catalysis in the carbamyl phosphate binding site of Escherichia coli aspartate transcarbamylase. Biochemistry. 1989 Mar 21;28(6):2592–2600. [PubMed] [Google Scholar]
  • Kraus JP, Hodges PE, Williamson CL, Horwich AL, Kalousek F, Williams KR, Rosenberg LE. A cDNA clone for the precursor of rat mitochondrial ornithine transcarbamylase: comparison of rat and human leader sequences and conservation of catalytic sites. Nucleic Acids Res. 1985 Feb 11;13(3):943–952. [PMC free article] [PubMed] [Google Scholar]
  • McDowall S, van Heeswijck R, Hoogenraad N. Site-directed mutagenesis of Arg60 and Cys271 in ornithine transcarbamylase from rat liver. Protein Eng. 1990 Oct;4(1):73–77. [PubMed] [Google Scholar]
  • Marshall M, Cohen PP. The essential sulfhydryl group of ornithine transcarbamylases. pH dependence of the spectra of its 2-mercuri-4-nitrophenol derivative. J Biol Chem. 1980 Aug 10;255(15):7296–7300. [PubMed] [Google Scholar]
  • Thoden JB, Holden HM, Wesenberg G, Raushel FM, Rayment I. Structure of carbamoyl phosphate synthetase: a journey of 96 A from substrate to product. Biochemistry. 1997 May 27;36(21):6305–6316. [PubMed] [Google Scholar]
  • Bewley MC, Jeffrey PD, Patchett ML, Kanyo ZF, Baker EN. Crystal structures of Bacillus caldovelox arginase in complex with substrate and inhibitors reveal new insights into activation, inhibition and catalysis in the arginase superfamily. Structure. 1999 Apr 15;7(4):435–448. [PubMed] [Google Scholar]
  • Oh BH, Pandit J, Kang CH, Nikaido K, Gokcen S, Ames GF, Kim SH. Three-dimensional structures of the periplasmic lysine/arginine/ornithine-binding protein with and without a ligand. J Biol Chem. 1993 May 25;268(15):11348–11355. [PubMed] [Google Scholar]
  • Oh BH, Ames GF, Kim SH. Structural basis for multiple ligand specificity of the periplasmic lysine-, arginine-, ornithine-binding protein. J Biol Chem. 1994 Oct 21;269(42):26323–26330. [PubMed] [Google Scholar]
  • Kuo LC, Lipscomb WN, Kantrowitz ER. Zn(II)-induced cooperativity of Escherichia coli ornithine transcarbamoylase. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2250–2254. [PMC free article] [PubMed] [Google Scholar]
  • Lee S, Shen WH, Miller AW, Kuo LC. Zn2+ regulation of ornithine transcarbamoylase. I. Mechanism of action. J Mol Biol. 1990 Jan 5;211(1):255–269. [PubMed] [Google Scholar]
  • Porter RW, Modebe MO, Stark GR. Aspartate transcarbamylase. Kinetic studies of the catalytic subunit. J Biol Chem. 1969 Apr 10;244(7):1846–1859. [PubMed] [Google Scholar]
  • Merritt EA, Murphy ME. Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr D Biol Crystallogr. 1994 Nov 1;50(Pt 6):869–873. [PubMed] [Google Scholar]
  • Barton GJ. ALSCRIPT: a tool to format multiple sequence alignments. Protein Eng. 1993 Jan;6(1):37–40. [PubMed] [Google Scholar]
  • Evans SV. SETOR: hardware-lighted three-dimensional solid model representations of macromolecules. J Mol Graph. 1993 Jun;11(2):134–128. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

-