Skip to main content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Biochem J. 2001 Mar 15; 354(Pt 3): 531–537.
PMCID: PMC1221684
PMID: 11237857

Perivenous expression of the mRNA of the three hypoxia-inducible factor alpha-subunits, HIF1alpha, HIF2alpha and HIF3alpha, in rat liver.

Abstract

The cDNAs of three hypoxia-inducible factor (HIF) alpha-subunits were cloned from RNA of primary rat hepatocytes by reverse transcriptase PCR. All three cDNAs encoded functionally active proteins, of 825, 874 and 662 amino acids. After transfection they were able to activate luciferase activity of a luciferase gene construct containing three HIF-responsive elements. The mRNAs of the rat HIF alpha-subunits were expressed predominantly in the perivenous zone of rat liver tissue; the nuclear HIFalpha proteins, however, did not appear to be zonated.

Full Text

The Full Text of this article is available as a PDF (341K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  • Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5510–5514. [PMC free article] [PubMed] [Google Scholar]
  • Hogenesch JB, Chan WK, Jackiw VH, Brown RC, Gu YZ, Pray-Grant M, Perdew GH, Bradfield CA. Characterization of a subset of the basic-helix-loop-helix-PAS superfamily that interacts with components of the dioxin signaling pathway. J Biol Chem. 1997 Mar 28;272(13):8581–8593. [PubMed] [Google Scholar]
  • Gu YZ, Moran SM, Hogenesch JB, Wartman L, Bradfield CA. Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3alpha. Gene Expr. 1998;7(3):205–213. [PMC free article] [PubMed] [Google Scholar]
  • Wenger RH, Gassmann M. Oxygen(es) and the hypoxia-inducible factor-1. Biol Chem. 1997 Jul;378(7):609–616. [PubMed] [Google Scholar]
  • Tian H, McKnight SL, Russell DW. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev. 1997 Jan 1;11(1):72–82. [PubMed] [Google Scholar]
  • Ema M, Taya S, Yokotani N, Sogawa K, Matsuda Y, Fujii-Kuriyama Y. A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4273–4278. [PMC free article] [PubMed] [Google Scholar]
  • Flamme I, Fröhlich T, von Reutern M, Kappel A, Damert A, Risau W. HRF, a putative basic helix-loop-helix-PAS-domain transcription factor is closely related to hypoxia-inducible factor-1 alpha and developmentally expressed in blood vessels. Mech Dev. 1997 Apr;63(1):51–60. [PubMed] [Google Scholar]
  • Kietzmann T, Roth U, Jungermann K. Induction of the plasminogen activator inhibitor-1 gene expression by mild hypoxia via a hypoxia response element binding the hypoxia-inducible factor-1 in rat hepatocytes. Blood. 1999 Dec 15;94(12):4177–4185. [PubMed] [Google Scholar]
  • Ladoux A, Frelin C. Cardiac expressions of HIF-1 alpha and HLF/EPAS, two basic loop helix/PAS domain transcription factors involved in adaptative responses to hypoxic stresses. Biochem Biophys Res Commun. 1997 Nov 26;240(3):552–556. [PubMed] [Google Scholar]
  • Semenza GL, Roth PH, Fang HM, Wang GL. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem. 1994 Sep 23;269(38):23757–23763. [PubMed] [Google Scholar]
  • Semenza GL, Jiang BH, Leung SW, Passantino R, Concordet JP, Maire P, Giallongo A. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem. 1996 Dec 20;271(51):32529–32537. [PubMed] [Google Scholar]
  • Beck I, Ramirez S, Weinmann R, Caro J. Enhancer element at the 3'-flanking region controls transcriptional response to hypoxia in the human erythropoietin gene. J Biol Chem. 1991 Aug 25;266(24):15563–15566. [PubMed] [Google Scholar]
  • Bunn HF, Poyton RO. Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev. 1996 Jul;76(3):839–885. [PubMed] [Google Scholar]
  • Jungermann K, Kietzmann T. Zonation of parenchymal and nonparenchymal metabolism in liver. Annu Rev Nutr. 1996;16:179–203. [PubMed] [Google Scholar]
  • Jungermann K, Kietzmann T. Oxygen: modulator of metabolic zonation and disease of the liver. Hepatology. 2000 Feb;31(2):255–260. [PubMed] [Google Scholar]
  • Berry MN, Friend DS. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol. 1969 Dec;43(3):506–520. [PMC free article] [PubMed] [Google Scholar]
  • Immenschuh S, Hinke V, Ohlmann A, Gifhorn-Katz S, Katz N, Jungermann K, Kietzmann T. Transcriptional activation of the haem oxygenase-1 gene by cGMP via a cAMP response element/activator protein-1 element in primary cultures of rat hepatocytes. Biochem J. 1998 Aug 15;334(Pt 1):141–146. [PMC free article] [PubMed] [Google Scholar]
  • Nauck M, Wölfle D, Katz N, Jungermann K. Modulation of the glucagon-dependent induction of phosphoenolpyruvate carboxykinase and tyrosine aminotransferase by arterial and venous oxygen concentrations in hepatocyte cultures. Eur J Biochem. 1981 Oct;119(3):657–661. [PubMed] [Google Scholar]
  • Bratke J, Kietzmann T, Jungermann K. Identification of an oxygen-responsive element in the 5'-flanking sequence of the rat cytosolic phosphoenolpyruvate carboxykinase-1 gene, modulating its glucagon-dependent activation. Biochem J. 1999 May 1;339(Pt 3):563–569. [PMC free article] [PubMed] [Google Scholar]
  • Krones A, Kietzmann T, Jungermann K. Periportal localization of glucagon receptor mRNA in rat liver and regulation of its expression by glucose and oxygen in hepatocyte cultures. FEBS Lett. 1998 Jan 9;421(2):136–140. [PubMed] [Google Scholar]
  • Wiesener MS, Turley H, Allen WE, Willam C, Eckardt KU, Talks KL, Wood SM, Gatter KC, Harris AL, Pugh CW, et al. Induction of endothelial PAS domain protein-1 by hypoxia: characterization and comparison with hypoxia-inducible factor-1alpha. Blood. 1998 Oct 1;92(7):2260–2268. [PubMed] [Google Scholar]
  • Jiang BH, Zheng JZ, Leung SW, Roe R, Semenza GL. Transactivation and inhibitory domains of hypoxia-inducible factor 1alpha. Modulation of transcriptional activity by oxygen tension. J Biol Chem. 1997 Aug 1;272(31):19253–19260. [PubMed] [Google Scholar]
  • Pugh CW, O'Rourke JF, Nagao M, Gleadle JM, Ratcliffe PJ. Activation of hypoxia-inducible factor-1; definition of regulatory domains within the alpha subunit. J Biol Chem. 1997 Apr 25;272(17):11205–11214. [PubMed] [Google Scholar]
  • O'Rourke JF, Tian YM, Ratcliffe PJ, Pugh CW. Oxygen-regulated and transactivating domains in endothelial PAS protein 1: comparison with hypoxia-inducible factor-1alpha. J Biol Chem. 1999 Jan 22;274(4):2060–2071. [PubMed] [Google Scholar]
  • Maemura K, Hsieh CM, Jain MK, Fukumoto S, Layne MD, Liu Y, Kourembanas S, Yet SF, Perrella MA, Lee ME. Generation of a dominant-negative mutant of endothelial PAS domain protein 1 by deletion of a potent C-terminal transactivation domain. J Biol Chem. 1999 Oct 29;274(44):31565–31570. [PubMed] [Google Scholar]
  • Tian H, Hammer RE, Matsumoto AM, Russell DW, McKnight SL. The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev. 1998 Nov 1;12(21):3320–3324. [PMC free article] [PubMed] [Google Scholar]
  • Wiener CM, Booth G, Semenza GL. In vivo expression of mRNAs encoding hypoxia-inducible factor 1. Biochem Biophys Res Commun. 1996 Aug 14;225(2):485–488. [PubMed] [Google Scholar]
  • Yu AY, Frid MG, Shimoda LA, Wiener CM, Stenmark K, Semenza GL. Temporal, spatial, and oxygen-regulated expression of hypoxia-inducible factor-1 in the lung. Am J Physiol. 1998 Oct;275(4 Pt 1):L818–L826. [PubMed] [Google Scholar]
  • Nguyen SV, Claycomb WC. Hypoxia regulates the expression of the adrenomedullin and HIF-1 genes in cultured HL-1 cardiomyocytes. Biochem Biophys Res Commun. 1999 Nov 19;265(2):382–386. [PubMed] [Google Scholar]
  • Huang LE, Arany Z, Livingston DM, Bunn HF. Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J Biol Chem. 1996 Dec 13;271(50):32253–32259. [PubMed] [Google Scholar]
  • Kallio PJ, Okamoto K, O'Brien S, Carrero P, Makino Y, Tanaka H, Poellinger L. Signal transduction in hypoxic cells: inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible factor-1alpha. EMBO J. 1998 Nov 16;17(22):6573–6586. [PMC free article] [PubMed] [Google Scholar]
  • Chilov D, Camenisch G, Kvietikova I, Ziegler U, Gassmann M, Wenger RH. Induction and nuclear translocation of hypoxia-inducible factor-1 (HIF-1): heterodimerization with ARNT is not necessary for nuclear accumulation of HIF-1alpha. J Cell Sci. 1999 Apr;112(Pt 8):1203–1212. [PubMed] [Google Scholar]
  • Hellwig-Bürgel T, Rutkowski K, Metzen E, Fandrey J, Jelkmann W. Interleukin-1beta and tumor necrosis factor-alpha stimulate DNA binding of hypoxia-inducible factor-1. Blood. 1999 Sep 1;94(5):1561–1567. [PubMed] [Google Scholar]
  • Semenza GL. Expression of hypoxia-inducible factor 1: mechanisms and consequences. Biochem Pharmacol. 2000 Jan 1;59(1):47–53. [PubMed] [Google Scholar]
  • Michalopoulos GK, DeFrances MC. Liver regeneration. Science. 1997 Apr 4;276(5309):60–66. [PubMed] [Google Scholar]
  • Richard DE, Berra E, Pouyssegur J. Nonhypoxic pathway mediates the induction of hypoxia-inducible factor 1alpha in vascular smooth muscle cells. J Biol Chem. 2000 Sep 1;275(35):26765–26771. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

-