Skip to main content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Biochem J. 2001 May 15; 356(Pt 1): 1–10.
PMCID: PMC1221806
PMID: 11336630

The marks, mechanisms and memory of epigenetic states in mammals.

Abstract

It is well recognized that there is a surprising degree of phenotypic variation among genetically identical individuals, even when the environmental influences, in the strict sense of the word, are identical. Genetic textbooks acknowledge this fact and use different terms, such as 'intangible variation' or 'developmental noise', to describe it. We believe that this intangible variation results from the stochastic establishment of epigenetic modifications to the DNA nucleotide sequence. These modifications, which may involve cytosine methylation and chromatin remodelling, result in alterations in gene expression which, in turn, affects the phenotype of the organism. Recent evidence, from our work and that of others in mice, suggests that these epigenetic modifications, which in the past were thought to be cleared and reset on passage through the germline, may sometimes be inherited to the next generation. This is termed epigenetic inheritance, and while this process has been well recognized in plants, the recent findings in mice force us to consider the implications of this type of inheritance in mammals. At this stage we do not know how extensive this phenomenon is in humans, but it may well turn out to be the explanation for some diseases which appear to be sporadic or show only weak genetic linkage.

Full Text

The Full Text of this article is available as a PDF (207K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  • Santi DV, Garrett CE, Barr PJ. On the mechanism of inhibition of DNA-cytosine methyltransferases by cytosine analogs. Cell. 1983 May;33(1):9–10. [PubMed] [Google Scholar]
  • Chen L, MacMillan AM, Chang W, Ezaz-Nikpay K, Lane WS, Verdine GL. Direct identification of the active-site nucleophile in a DNA (cytosine-5)-methyltransferase. Biochemistry. 1991 Nov 19;30(46):11018–11025. [PubMed] [Google Scholar]
  • Bird AP. Use of restriction enzymes to study eukaryotic DNA methylation: II. The symmetry of methylated sites supports semi-conservative copying of the methylation pattern. J Mol Biol. 1978 Jan 5;118(1):49–60. [PubMed] [Google Scholar]
  • Cedar H, Solage A, Glaser G, Razin A. Direct detection of methylated cytosine in DNA by use of the restriction enzyme MspI. Nucleic Acids Res. 1979;6(6):2125–2132. [PMC free article] [PubMed] [Google Scholar]
  • Cooper DN, Krawczak M. Cytosine methylation and the fate of CpG dinucleotides in vertebrate genomes. Hum Genet. 1989 Sep;83(2):181–188. [PubMed] [Google Scholar]
  • Bird AP. CpG-rich islands and the function of DNA methylation. Nature. 1986 May 15;321(6067):209–213. [PubMed] [Google Scholar]
  • Gardiner-Garden M, Frommer M. CpG islands in vertebrate genomes. J Mol Biol. 1987 Jul 20;196(2):261–282. [PubMed] [Google Scholar]
  • Bestor T, Laudano A, Mattaliano R, Ingram V. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J Mol Biol. 1988 Oct 20;203(4):971–983. [PubMed] [Google Scholar]
  • Yoder JA, Bestor TH. A candidate mammalian DNA methyltransferase related to pmt1p of fission yeast. Hum Mol Genet. 1998 Feb;7(2):279–284. [PubMed] [Google Scholar]
  • Okano M, Xie S, Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet. 1998 Jul;19(3):219–220. [PubMed] [Google Scholar]
  • Gruenbaum Y, Cedar H, Razin A. Substrate and sequence specificity of a eukaryotic DNA methylase. Nature. 1982 Feb 18;295(5850):620–622. [PubMed] [Google Scholar]
  • Stein R, Gruenbaum Y, Pollack Y, Razin A, Cedar H. Clonal inheritance of the pattern of DNA methylation in mouse cells. Proc Natl Acad Sci U S A. 1982 Jan;79(1):61–65. [PMC free article] [PubMed] [Google Scholar]
  • Pollack Y, Stein R, Razin A, Cedar H. Methylation of foreign DNA sequences in eukaryotic cells. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6463–6467. [PMC free article] [PubMed] [Google Scholar]
  • Wigler M, Levy D, Perucho M. The somatic replication of DNA methylation. Cell. 1981 Apr;24(1):33–40. [PubMed] [Google Scholar]
  • Silva AJ, Ward K, White R. Mosaic methylation in clonal tissue. Dev Biol. 1993 Apr;156(2):391–398. [PubMed] [Google Scholar]
  • Clark SJ, Harrison J, Frommer M. CpNpG methylation in mammalian cells. Nat Genet. 1995 May;10(1):20–27. [PubMed] [Google Scholar]
  • Garrick D, Fiering S, Martin DI, Whitelaw E. Repeat-induced gene silencing in mammals. Nat Genet. 1998 Jan;18(1):56–59. [PubMed] [Google Scholar]
  • Bestor TH. The DNA methyltransferases of mammals. Hum Mol Genet. 2000 Oct;9(16):2395–2402. [PubMed] [Google Scholar]
  • Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999 Oct 29;99(3):247–257. [PubMed] [Google Scholar]
  • Vertino PM, Yen RW, Gao J, Baylin SB. De novo methylation of CpG island sequences in human fibroblasts overexpressing DNA (cytosine-5-)-methyltransferase. Mol Cell Biol. 1996 Aug;16(8):4555–4565. [PMC free article] [PubMed] [Google Scholar]
  • Rhee I, Jair KW, Yen RW, Lengauer C, Herman JG, Kinzler KW, Vogelstein B, Baylin SB, Schuebel KE. CpG methylation is maintained in human cancer cells lacking DNMT1. Nature. 2000 Apr 27;404(6781):1003–1007. [PubMed] [Google Scholar]
  • Szabó PE, Mann JR. Biallelic expression of imprinted genes in the mouse germ line: implications for erasure, establishment, and mechanisms of genomic imprinting. Genes Dev. 1995 Aug 1;9(15):1857–1868. [PubMed] [Google Scholar]
  • Shemer R, Birger Y, Riggs AD, Razin A. Structure of the imprinted mouse Snrpn gene and establishment of its parental-specific methylation pattern. Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10267–10272. [PMC free article] [PubMed] [Google Scholar]
  • Tada M, Tada T, Lefebvre L, Barton SC, Surani MA. Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. EMBO J. 1997 Nov 3;16(21):6510–6520. [PMC free article] [PubMed] [Google Scholar]
  • Monk M, Boubelik M, Lehnert S. Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development. 1987 Mar;99(3):371–382. [PubMed] [Google Scholar]
  • Bhattacharya SK, Ramchandani S, Cervoni N, Szyf M. A mammalian protein with specific demethylase activity for mCpG DNA. Nature. 1999 Feb 18;397(6720):579–583. [PubMed] [Google Scholar]
  • Jost JP, Siegmann M, Sun L, Leung R. Mechanisms of DNA demethylation in chicken embryos. Purification and properties of a 5-methylcytosine-DNA glycosylase. J Biol Chem. 1995 Apr 28;270(17):9734–9739. [PubMed] [Google Scholar]
  • Cartwright IL, Hertzberg RP, Dervan PB, Elgin SC. Cleavage of chromatin with methidiumpropyl-EDTA . iron(II). Proc Natl Acad Sci U S A. 1983 Jun;80(11):3213–3217. [PMC free article] [PubMed] [Google Scholar]
  • Funk M, Hegemann JH, Philippsen P. Chromatin digestion with restriction endonucleases reveals 150-160 bp of protected DNA in the centromere of chromosome XIV in Saccharomyces cerevisiae. Mol Gen Genet. 1989 Oct;219(1-2):153–160. [PubMed] [Google Scholar]
  • Karpen GH. Position-effect variegation and the new biology of heterochromatin. Curr Opin Genet Dev. 1994 Apr;4(2):281–291. [PubMed] [Google Scholar]
  • Wolffe AP, Hayes JJ. Chromatin disruption and modification. Nucleic Acids Res. 1999 Feb 1;27(3):711–720. [PMC free article] [PubMed] [Google Scholar]
  • Turner BM, Birley AJ, Lavender J. Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell. 1992 Apr 17;69(2):375–384. [PubMed] [Google Scholar]
  • Hong L, Schroth GP, Matthews HR, Yau P, Bradbury EM. Studies of the DNA binding properties of histone H4 amino terminus. Thermal denaturation studies reveal that acetylation markedly reduces the binding constant of the H4 "tail" to DNA. J Biol Chem. 1993 Jan 5;268(1):305–314. [PubMed] [Google Scholar]
  • Norton VG, Imai BS, Yau P, Bradbury EM. Histone acetylation reduces nucleosome core particle linking number change. Cell. 1989 May 5;57(3):449–457. [PubMed] [Google Scholar]
  • Garcia-Ramirez M, Rocchini C, Ausio J. Modulation of chromatin folding by histone acetylation. J Biol Chem. 1995 Jul 28;270(30):17923–17928. [PubMed] [Google Scholar]
  • Perry CA, Annunziato AT. Influence of histone acetylation on the solubility, H1 content and DNase I sensitivity of newly assembled chromatin. Nucleic Acids Res. 1989 Jun 12;17(11):4275–4291. [PMC free article] [PubMed] [Google Scholar]
  • Turner BM. Histone acetylation and an epigenetic code. Bioessays. 2000 Sep;22(9):836–845. [PubMed] [Google Scholar]
  • Bone JR, Lavender J, Richman R, Palmer MJ, Turner BM, Kuroda MI. Acetylated histone H4 on the male X chromosome is associated with dosage compensation in Drosophila. Genes Dev. 1994 Jan;8(1):96–104. [PubMed] [Google Scholar]
  • Lavender JS, Birley AJ, Palmer MJ, Kuroda MI, Turner BM. Histone H4 acetylated at lysine 16 and proteins of the Drosophila dosage compensation pathway co-localize on the male X chromosome through mitosis. Chromosome Res. 1994 Sep;2(5):398–404. [PubMed] [Google Scholar]
  • Gu W, Szauter P, Lucchesi JC. Targeting of MOF, a putative histone acetyl transferase, to the X chromosome of Drosophila melanogaster. Dev Genet. 1998;22(1):56–64. [PubMed] [Google Scholar]
  • Robertson KD, Ait-Si-Ali S, Yokochi T, Wade PA, Jones PL, Wolffe AP. DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet. 2000 Jul;25(3):338–342. [PubMed] [Google Scholar]
  • Rountree MR, Bachman KE, Baylin SB. DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat Genet. 2000 Jul;25(3):269–277. [PubMed] [Google Scholar]
  • Fuks F, Burgers WA, Brehm A, Hughes-Davies L, Kouzarides T. DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat Genet. 2000 Jan;24(1):88–91. [PubMed] [Google Scholar]
  • Nan X, Campoy FJ, Bird A. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell. 1997 Feb 21;88(4):471–481. [PubMed] [Google Scholar]
  • Kaludov NK, Wolffe AP. MeCP2 driven transcriptional repression in vitro: selectivity for methylated DNA, action at a distance and contacts with the basal transcription machinery. Nucleic Acids Res. 2000 May 1;28(9):1921–1928. [PMC free article] [PubMed] [Google Scholar]
  • Chandler SP, Guschin D, Landsberger N, Wolffe AP. The methyl-CpG binding transcriptional repressor MeCP2 stably associates with nucleosomal DNA. Biochemistry. 1999 Jun 1;38(22):7008–7018. [PubMed] [Google Scholar]
  • Wade PA, Gegonne A, Jones PL, Ballestar E, Aubry F, Wolffe AP. Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nat Genet. 1999 Sep;23(1):62–66. [PubMed] [Google Scholar]
  • Ng HH, Bird A. DNA methylation and chromatin modification. Curr Opin Genet Dev. 1999 Apr;9(2):158–163. [PubMed] [Google Scholar]
  • Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998 May 28;393(6683):386–389. [PubMed] [Google Scholar]
  • Tse C, Sera T, Wolffe AP, Hansen JC. Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol Cell Biol. 1998 Aug;18(8):4629–4638. [PMC free article] [PubMed] [Google Scholar]
  • Lyko F, Ramsahoye BH, Jaenisch R. DNA methylation in Drosophila melanogaster. Nature. 2000 Nov 30;408(6812):538–540. [PubMed] [Google Scholar]
  • Bestor TH. DNA methylation: evolution of a bacterial immune function into a regulator of gene expression and genome structure in higher eukaryotes. Philos Trans R Soc Lond B Biol Sci. 1990 Jan 30;326(1235):179–187. [PubMed] [Google Scholar]
  • Grandjean V, Hauck Y, Beloin C, Le Hégarat F, Hirschbein L. Chromosomal inactivation of Bacillus subtilis exfusants: a prokaryotic model of epigenetic regulation. Biol Chem. 1998 Apr-May;379(4-5):553–557. [PubMed] [Google Scholar]
  • LYON MF. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature. 1961 Apr 22;190:372–373. [PubMed] [Google Scholar]
  • Rastan S. Non-random X-chromosome inactivation in mouse X-autosome translocation embryos--location of the inactivation centre. J Embryol Exp Morphol. 1983 Dec;78:1–22. [PubMed] [Google Scholar]
  • Lee JT, Strauss WM, Dausman JA, Jaenisch R. A 450 kb transgene displays properties of the mammalian X-inactivation center. Cell. 1996 Jul 12;86(1):83–94. [PubMed] [Google Scholar]
  • Brown CJ, Hendrich BD, Rupert JL, Lafrenière RG, Xing Y, Lawrence J, Willard HF. The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell. 1992 Oct 30;71(3):527–542. [PubMed] [Google Scholar]
  • Brockdorff N, Ashworth A, Kay GF, McCabe VM, Norris DP, Cooper PJ, Swift S, Rastan S. The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell. 1992 Oct 30;71(3):515–526. [PubMed] [Google Scholar]
  • Lee JT, Davidow LS, Warshawsky D. Tsix, a gene antisense to Xist at the X-inactivation centre. Nat Genet. 1999 Apr;21(4):400–404. [PubMed] [Google Scholar]
  • Clemson CM, McNeil JA, Willard HF, Lawrence JB. XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J Cell Biol. 1996 Feb;132(3):259–275. [PMC free article] [PubMed] [Google Scholar]
  • Hornstra IK, Yang TP. High-resolution methylation analysis of the human hypoxanthine phosphoribosyltransferase gene 5' region on the active and inactive X chromosomes: correlation with binding sites for transcription factors. Mol Cell Biol. 1994 Feb;14(2):1419–1430. [PMC free article] [PubMed] [Google Scholar]
  • Pfeifer GP, Tanguay RL, Steigerwald SD, Riggs AD. In vivo footprint and methylation analysis by PCR-aided genomic sequencing: comparison of active and inactive X chromosomal DNA at the CpG island and promoter of human PGK-1. Genes Dev. 1990 Aug;4(8):1277–1287. [PubMed] [Google Scholar]
  • Jeppesen P, Turner BM. The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell. 1993 Jul 30;74(2):281–289. [PubMed] [Google Scholar]
  • Monk M. Genomic imprinting. Genes Dev. 1988 Aug;2(8):921–925. [PubMed] [Google Scholar]
  • DeChiara TM, Robertson EJ, Efstratiadis A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell. 1991 Feb 22;64(4):849–859. [PubMed] [Google Scholar]
  • Barlow DP, Stöger R, Herrmann BG, Saito K, Schweifer N. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature. 1991 Jan 3;349(6304):84–87. [PubMed] [Google Scholar]
  • Bartolomei MS, Zemel S, Tilghman SM. Parental imprinting of the mouse H19 gene. Nature. 1991 May 9;351(6322):153–155. [PubMed] [Google Scholar]
  • Leff SE, Brannan CI, Reed ML, Ozçelik T, Francke U, Copeland NG, Jenkins NA. Maternal imprinting of the mouse Snrpn gene and conserved linkage homology with the human Prader-Willi syndrome region. Nat Genet. 1992 Dec;2(4):259–264. [PubMed] [Google Scholar]
  • Sapienza C, Peterson AC, Rossant J, Balling R. Degree of methylation of transgenes is dependent on gamete of origin. Nature. 1987 Jul 16;328(6127):251–254. [PubMed] [Google Scholar]
  • Swain JL, Stewart TA, Leder P. Parental legacy determines methylation and expression of an autosomal transgene: a molecular mechanism for parental imprinting. Cell. 1987 Aug 28;50(5):719–727. [PubMed] [Google Scholar]
  • Reik W, Collick A, Norris ML, Barton SC, Surani MA. Genomic imprinting determines methylation of parental alleles in transgenic mice. Nature. 1987 Jul 16;328(6127):248–251. [PubMed] [Google Scholar]
  • McGowan R, Campbell R, Peterson A, Sapienza C. Cellular mosaicism in the methylation and expression of hemizygous loci in the mouse. Genes Dev. 1989 Nov;3(11):1669–1676. [PubMed] [Google Scholar]
  • Hadchouel M, Farza H, Simon D, Tiollais P, Pourcel C. Maternal inhibition of hepatitis B surface antigen gene expression in transgenic mice correlates with de novo methylation. Nature. 1987 Oct 1;329(6138):454–456. [PubMed] [Google Scholar]
  • Surani MA. Imprinting and the initiation of gene silencing in the germ line. Cell. 1998 May 1;93(3):309–312. [PubMed] [Google Scholar]
  • Mayer W, Niveleau A, Walter J, Fundele R, Haaf T. Demethylation of the zygotic paternal genome. Nature. 2000 Feb 3;403(6769):501–502. [PubMed] [Google Scholar]
  • Stöger R, Kubicka P, Liu CG, Kafri T, Razin A, Cedar H, Barlow DP. Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell. 1993 Apr 9;73(1):61–71. [PubMed] [Google Scholar]
  • Tremblay KD, Saam JR, Ingram RS, Tilghman SM, Bartolomei MS. A paternal-specific methylation imprint marks the alleles of the mouse H19 gene. Nat Genet. 1995 Apr;9(4):407–413. [PubMed] [Google Scholar]
  • Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting. Nature. 1993 Nov 25;366(6453):362–365. [PubMed] [Google Scholar]
  • Svensson K, Mattsson R, James TC, Wentzel P, Pilartz M, MacLaughlin J, Miller SJ, Olsson T, Eriksson UJ, Ohlsson R. The paternal allele of the H19 gene is progressively silenced during early mouse development: the acetylation status of histones may be involved in the generation of variegated expression patterns. Development. 1998 Jan;125(1):61–69. [PubMed] [Google Scholar]
  • Gardiner-Garden M, Ballesteros M, Gordon M, Tam PP. Histone- and protamine-DNA association: conservation of different patterns within the beta-globin domain in human sperm. Mol Cell Biol. 1998 Jun;18(6):3350–3356. [PMC free article] [PubMed] [Google Scholar]
  • Plass C, Shibata H, Kalcheva I, Mullins L, Kotelevtseva N, Mullins J, Kato R, Sasaki H, Hirotsune S, Okazaki Y, et al. Identification of Grf1 on mouse chromosome 9 as an imprinted gene by RLGS-M. Nat Genet. 1996 Sep;14(1):106–109. [PubMed] [Google Scholar]
  • BRINK RA. Paramutation and chromosome organization. Q Rev Biol. 1960 Jun;35:120–137. [PubMed] [Google Scholar]
  • Hollick JB, Patterson GI, Coe EH, Jr, Cone KC, Chandler VL. Allelic interactions heritably alter the activity of a metastable maize pl allele. Genetics. 1995 Oct;141(2):709–719. [PMC free article] [PubMed] [Google Scholar]
  • Grewal SI, Klar AJ. Chromosomal inheritance of epigenetic states in fission yeast during mitosis and meiosis. Cell. 1996 Jul 12;86(1):95–101. [PubMed] [Google Scholar]
  • Nakayama J, Klar AJ, Grewal SI. A chromodomain protein, Swi6, performs imprinting functions in fission yeast during mitosis and meiosis. Cell. 2000 Apr 28;101(3):307–317. [PubMed] [Google Scholar]
  • Cavalli G, Paro R. The Drosophila Fab-7 chromosomal element conveys epigenetic inheritance during mitosis and meiosis. Cell. 1998 May 15;93(4):505–518. [PubMed] [Google Scholar]
  • Lyko F, Paro R. Chromosomal elements conferring epigenetic inheritance. Bioessays. 1999 Oct;21(10):824–832. [PubMed] [Google Scholar]
  • Cavalli G, Paro R. Epigenetic inheritance of active chromatin after removal of the main transactivator. Science. 1999 Oct 29;286(5441):955–958. [PubMed] [Google Scholar]
  • Belyaev DK, Ruvinsky AO, Borodin PM. Inheritance of alternative states of the fused gene in mice. J Hered. 1981 Mar-Apr;72(2):107–112. [PubMed] [Google Scholar]
  • Reed SC. The Inheritance and Expression of Fused, a New Mutation in the House Mouse. Genetics. 1937 Jan;22(1):1–13. [PMC free article] [PubMed] [Google Scholar]
  • Wolff GL. Influence of maternal phenotype on metabolic differentiation of agouti locus mutants in the mouse. Genetics. 1978 Mar;88(3):529–539. [PMC free article] [PubMed] [Google Scholar]
  • Morgan HD, Sutherland HG, Martin DI, Whitelaw E. Epigenetic inheritance at the agouti locus in the mouse. Nat Genet. 1999 Nov;23(3):314–318. [PubMed] [Google Scholar]
  • Allen ND, Norris ML, Surani MA. Epigenetic control of transgene expression and imprinting by genotype-specific modifiers. Cell. 1990 Jun 1;61(5):853–861. [PubMed] [Google Scholar]
  • Dobie KW, Lee M, Fantes JA, Graham E, Clark AJ, Springbett A, Lathe R, McClenaghan M. Variegated transgene expression in mouse mammary gland is determined by the transgene integration locus. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6659–6664. [PMC free article] [PubMed] [Google Scholar]
  • Robertson G, Garrick D, Wu W, Kearns M, Martin D, Whitelaw E. Position-dependent variegation of globin transgene expression in mice. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5371–5375. [PMC free article] [PubMed] [Google Scholar]
  • Sutherland HG, Kearns M, Morgan HD, Headley AP, Morris C, Martin DI, Whitelaw E. Reactivation of heritably silenced gene expression in mice. Mamm Genome. 2000 May;11(5):347–355. [PubMed] [Google Scholar]
  • Kearns M, Preis J, McDonald M, Morris C, Whitelaw E. Complex patterns of inheritance of an imprinted murine transgene suggest incomplete germline erasure. Nucleic Acids Res. 2000 Sep 1;28(17):3301–3309. [PMC free article] [PubMed] [Google Scholar]
  • Duhl DM, Vrieling H, Miller KA, Wolff GL, Barsh GS. Neomorphic agouti mutations in obese yellow mice. Nat Genet. 1994 Sep;8(1):59–65. [PubMed] [Google Scholar]
  • Perry WL, Copeland NG, Jenkins NA. The molecular basis for dominant yellow agouti coat color mutations. Bioessays. 1994 Oct;16(10):705–707. [PubMed] [Google Scholar]
  • Zeng L, Fagotto F, Zhang T, Hsu W, Vasicek TJ, Perry WL, 3rd, Lee JJ, Tilghman SM, Gumbiner BM, Costantini F. The mouse Fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell. 1997 Jul 11;90(1):181–192. [PubMed] [Google Scholar]
  • Vasicek TJ, Zeng L, Guan XJ, Zhang T, Costantini F, Tilghman SM. Two dominant mutations in the mouse fused gene are the result of transposon insertions. Genetics. 1997 Oct;147(2):777–786. [PMC free article] [PubMed] [Google Scholar]
  • Neumann B, Kubicka P, Barlow DP. Characteristics of imprinted genes. Nat Genet. 1995 Jan;9(1):12–13. [PubMed] [Google Scholar]
  • Palmiter RD, Brinster RL. Germ-line transformation of mice. Annu Rev Genet. 1986;20:465–499. [PMC free article] [PubMed] [Google Scholar]
  • Moore T, Constancia M, Zubair M, Bailleul B, Feil R, Sasaki H, Reik W. Multiple imprinted sense and antisense transcripts, differential methylation and tandem repeats in a putative imprinting control region upstream of mouse Igf2. Proc Natl Acad Sci U S A. 1997 Nov 11;94(23):12509–12514. [PMC free article] [PubMed] [Google Scholar]
  • Wutz A, Smrzka OW, Schweifer N, Schellander K, Wagner EF, Barlow DP. Imprinted expression of the Igf2r gene depends on an intronic CpG island. Nature. 1997 Oct 16;389(6652):745–749. [PubMed] [Google Scholar]
  • Rougeulle C, Cardoso C, Fontés M, Colleaux L, Lalande M. An imprinted antisense RNA overlaps UBE3A and a second maternally expressed transcript. Nat Genet. 1998 May;19(1):15–16. [PubMed] [Google Scholar]
  • Lee JT, Jaenisch R. Long-range cis effects of ectopic X-inactivation centres on a mouse autosome. Nature. 1997 Mar 20;386(6622):275–279. [PubMed] [Google Scholar]
  • Smilinich NJ, Day CD, Fitzpatrick GV, Caldwell GM, Lossie AC, Cooper PR, Smallwood AC, Joyce JA, Schofield PN, Reik W, et al. A maternally methylated CpG island in KvLQT1 is associated with an antisense paternal transcript and loss of imprinting in Beckwith-Wiedemann syndrome. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):8064–8069. [PMC free article] [PubMed] [Google Scholar]
  • Kuff EL, Lueders KK. The intracisternal A-particle gene family: structure and functional aspects. Adv Cancer Res. 1988;51:183–276. [PubMed] [Google Scholar]
  • Goyon C, Faugeron G. Targeted transformation of Ascobolus immersus and de novo methylation of the resulting duplicated DNA sequences. Mol Cell Biol. 1989 Jul;9(7):2818–2827. [PMC free article] [PubMed] [Google Scholar]
  • Rossignol JL, Faugeron G. Gene inactivation triggered by recognition between DNA repeats. Experientia. 1994 Mar 15;50(3):307–317. [PubMed] [Google Scholar]
  • Selker EU, Cambareri EB, Jensen BC, Haack KR. Rearrangement of duplicated DNA in specialized cells of Neurospora. Cell. 1987 Dec 4;51(5):741–752. [PubMed] [Google Scholar]
  • Selker EU, Garrett PW. DNA sequence duplications trigger gene inactivation in Neurospora crassa. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6870–6874. [PMC free article] [PubMed] [Google Scholar]
  • Hsieh J, Fire A. Recognition and silencing of repeated DNA. Annu Rev Genet. 2000;34:187–204. [PubMed] [Google Scholar]
  • Walsh CP, Chaillet JR, Bestor TH. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat Genet. 1998 Oct;20(2):116–117. [PubMed] [Google Scholar]
  • Chen ZJ, Pikaard CS. Transcriptional analysis of nucleolar dominance in polyploid plants: biased expression/silencing of progenitor rRNA genes is developmentally regulated in Brassica. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3442–3447. [PMC free article] [PubMed] [Google Scholar]
  • Honjo T, Reeder RH. Preferential transcription of Xenopus laevis ribosomal RNA in interspecies hybrids between Xenopus laevis and Xenopus mulleri. J Mol Biol. 1973 Oct 25;80(2):217–228. [PubMed] [Google Scholar]
  • Wolff GL, Kodell RL, Moore SR, Cooney CA. Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J. 1998 Aug;12(11):949–957. [PubMed] [Google Scholar]
  • Hall JG. Genomic imprinting: review and relevance to human diseases. Am J Hum Genet. 1990 May;46(5):857–873. [PMC free article] [PubMed] [Google Scholar]
  • Baylin SB, Herman JG. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet. 2000 Apr;16(4):168–174. [PubMed] [Google Scholar]
  • Robertson KD, Wolffe AP. DNA methylation in health and disease. Nat Rev Genet. 2000 Oct;1(1):11–19. [PubMed] [Google Scholar]
  • Silva AJ, White R. Inheritance of allelic blueprints for methylation patterns. Cell. 1988 Jul 15;54(2):145–152. [PubMed] [Google Scholar]
  • Bennett ST, Wilson AJ, Esposito L, Bouzekri N, Undlien DE, Cucca F, Nisticò L, Buzzetti R, Bosi E, Pociot F, et al. Insulin VNTR allele-specific effect in type 1 diabetes depends on identity of untransmitted paternal allele. The IMDIAB Group. Nat Genet. 1997 Nov;17(3):350–352. [PubMed] [Google Scholar]
  • Holliday R. The inheritance of epigenetic defects. Science. 1987 Oct 9;238(4824):163–170. [PubMed] [Google Scholar]
  • Smit AF. The origin of interspersed repeats in the human genome. Curr Opin Genet Dev. 1996 Dec;6(6):743–748. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

-